Teori peluang: Perbedaan antara revisi
Bruhccoli 1 (bicara | kontrib) k Menulis contoh dari peluang dan menambahkan sumber probabilitas |
Bruhccoli 1 (bicara | kontrib) k Memperbaiki penulisan caption tentang Dadu karena sebelumnya kurang rapi dan kurang dapat dipahami |
||
Baris 21: | Baris 21: | ||
== Ruang sampel == |
== Ruang sampel == |
||
[[Berkas:Dice.jpg|jmpl| |
[[Berkas:Dice.jpg|jmpl|Setiap [[dadu]] memiliki enam sisi, sehingga secara matematis dapat disimpulkan bahwa peluang setiap sisi untuk muncul adalah 1/6.]] |
||
Ruang sampel adalah himpunan yang memuat semua hasil yang berbeda, yang mungkin terjadi dalam suatu percobaan. Notasi dari ruang sampel sebagai berikut: |
Ruang sampel adalah himpunan yang memuat semua hasil yang berbeda, yang mungkin terjadi dalam suatu percobaan. Notasi dari ruang sampel sebagai berikut: |
||
Revisi per 26 Mei 2024 14.46
artikel ini perlu dirapikan agar memenuhi standar Wikipedia. Masalah khususnya adalah: Kalimat pengantar perlu diperbaiki karena sangat membingungkan. |
Teori peluang adalah salah satu cabang matematika yang bersangkutan dengan peluang (atau disebut juga probabilitas) dan analisis fenomena acak. Objek utama teori peluang adalah variabel acak, proses stokastik, dan kejadian: abstraksi matematis yang tidak dapat diprediksi melalui peristiwa atau kuantitas terukur yang dapat berupa kejadian tunggal atau berkembang dari waktu ke waktu dalam mode tampaknya acak. Sebagai contoh, saat satu koin dilemparkan, peluang masing-masing sisi untuk muncul adalah 1/2.
Jika satu koin dilemparkan atau sebuah dadu dianggap peristiwa acak, maka jika berkali-kali mengulangi urutan kejadian acak akan menunjukkan pola-pola tertentu, yang dapat dipelajari, dan diprediksi. Dua hasil matematis representatif menggambarkan pola tersebut adalah hukum bilangan besar, dan teorema limit pusat.
Sebagai dasar matematika untuk statistik, teori peluang adalah hal penting untuk kegiatan manusia disebabkan banyak hal yang melibatkan analisis kuantitatif set besar data. Metode teori peluang juga berlaku untuk deskripsi sistem yang kompleks diberikan pengetahuan hanya sebagian dari negara mereka, seperti dalam mekanika statistik. Sebuah penemuan besar fisika abad kedua puluh adalah sifat peluang fenomena fisik pada skala atom, dijelaskan dalam mekanika kuantum.
Sejarah
Teori peluang muncul pada abad ke-17, dimana teori peluang digunakan untuk mencari kemungkinan gagal dan berhasil dalam permainan dadu dan kartu. Selain itu, teori peluang digunakan untuk kegiatan yang bersifat prakiraan seperti prakiraan curah hujan dan kemenangan pertandingan.[1]
Ruang peluang
Misalkan ruang terukur, yaitu suatu himpunan dan sebuah aljabar σ pada . Himpunan disebut ruang sampel dan anggota aljabar σ disebut kejadian. Kemudian, misalkan suatu ukuran pada , sedemikian sehingga , yaitu fungsi yang memenuhi sifat-sifat berikut:
- untuk semua .
- .
- untuk semua yang saling asil.
- .
Selanjutnya, disebut ruang peluang.
Ruang sampel
Ruang sampel adalah himpunan yang memuat semua hasil yang berbeda, yang mungkin terjadi dalam suatu percobaan. Notasi dari ruang sampel sebagai berikut:
di mana adalah ruang sampel serta adalah banyaknya hasil (bisa terhingga atau tak terhingga). Misalnya, pelemparan sebuah dadu yang seimbang, semua kemungkinan nilai yang muncul = . Contoh lainnya, semua kemungkinan nilai yang muncul pelemparan dua buah koin setimbang ialah , di mana dan masing-masing menyatakan gambar dan angka.
Titik sampel
artikel ini perlu dirapikan agar memenuhi standar Wikipedia. Masalah khususnya adalah: Daftar cuman isinya nama-nama kartu. |
Titik sampel merupakan elemen atau unsur dalam ruang sampel.[2] Dalam pelemparan sebuah dadu yang menjadi titik sampelnya yaitu mata dadu dari angka 1 hingga 6 { {1}, {2}, {3}, {4}, {5}, {6} }, maka kemungkinan titik sampel yang akan didapatkan dalam sebuah pelemparan dadu adalah salah satu angka tersebut.
Pada pelemparan sebuah koin atau dua buah koin titik sampelnya adalah bagian angka (A) atau gambar (G) {A} dan {G}. Sementara itu, pada pengocokan seperangkat kartu bridge yang berjumlah 52 titik sampelnya yaitu :
- Kartu As atau angka 1 bergambar daun
- Kartu As atau angka 1 bergambar wajik
- Kartu As atau angka 1 bergambar hati
- Kartu As atau angka 1 bergambar semanggi
- Kartu poker atau angka 2 bergambar daun
- Kartu poker atau angka 2 bergambar wajik
- Kartu poker atau angka 2 bergambar hati
- Kartu poker atau angka 2 bergambar semanggi
- Angka 3 bergambar daun
- Angka 3 bergambar wajik
- Angka 3 bergambar hati
- Angka 3 bergambar semanggi
- Angka 4 bergambar daun
- Angka 4 bergambar wajik
- Angka 4 bergambar hati
- Angka 4 bergambar semanggi
- Angka 5 bergambar daun
- Angka 5 bergambar wajik
- Angka 5 bergambar hati
- Angka 5 bergambar semanggi
- Angka 6 bergambar daun
- Angka 6 bergambar wajik
- Angka 6 bergambar hati
- Angka 6 bergambar semanggi
- Angka 7 bergambar daun
- Angka 7 bergambar wajik
- Angka 7 bergambar hati
- Angka 7 bergambar semanggi
- Angka 8 bergambar daun
- Angka 8 bergambar wajik
- Angka 8 bergambar hati
- Angka 8 bergambar semanggi
- Angka 9 bergambar daun
- Angka 9 bergambar wajik
- Angka 9 bergambar hati
- Angka 9 bergambar semanggi
- Angka 10 bergambar daun
- Angka 10 bergambar wajik
- Angka 10 bergambar hati
- Angka 10 bergambar semanggi
- Jack daun
- Jack wajik
- Jack hati
- Jack semanggi
- Queen daun
- Queen wajik
- Queen hati
- Queen semanggi
- King daun
- King wajik
- King hati
- King semanggi
Peluang Kejadian
Kejadian () adalah himpunan bagian dari ruang sampel yang memiliki karakteristik tertentu. Kejadian biasanya dinotasikan dengan huruf kapital (A, B, ....)
Sebagai contoh, pada pelemparan dua buah koin setimbang maka kejadian munculnya sisi angka adalah = (GA, GG, AA} sebanyak 3 kejadian.
Frekuensi relatif
Frekuensi relatif adalah besar peluang dari percobaan-percobaan yang telah dilakukan seperti pada ilustrasi seorang anak melempar dadu sebanyak 50 kali, ia mendapatkan angka 3 sebanyak 15 kali.
Frekuensi Relatif atau Fr dapat ditentukan dengan menggunakan rumus berikut,
.
n= banyaknya kejadian yang muncul
a= banyaknya kejadian atau percobaan seluruhnya[2][1]
Lihat pula
Referensi
- ^ a b Kusumawardani, Linda (2011). Matematika untuk SMP dan MTs. Jakarta: Pusat Kurikulum dan Perbukuan Kementrian Pendidikan Nasional. hlm. 184. ISBN 9789790956919.
- ^ a b Dris, J. (2011). Matematika Jilid 3 untuk SMP dan MTs Kelas IX. Jakarta: Pusat Kurikulum dan Perbukuan Kementrian Pendidikan Nasional. hlm. 145. ISBN 9789790956674.