Lompat ke isi

Pengguna:Klasüo/bak pasir

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas

Logaritma
Domain dan Citra
Domain dari fungsi
Daerah hasil fungsi
Nilai-nilai spesifik
Nilai di
Nilai maksimumTidak ada
Nilai minimumTidak ada
Sifat khusus
Akar
Invers
Turunan
Antiturunan
Plot fungsi logaritma, dengan tiga basis yang umum digunakan. Titik-titik khusus logbb = 1 ditandai dengan garis bertitik-titik, dan semua irisan kurva pada logb 1 = 0.

Dalam matematika, logaritma adalah fungsi invers dengan eksponen. Itu berarti logaritma dari suatu bilangan yang diberikan x adalah eksponen dimana bilangan tetap lainnya, basis b dimasukkan untuk menghasilkan bilangan tersebut, yaitu x. Dalam kasus yang sederhana, logaritma menghitung jumlah kemunculan faktor yang sama dalam perkalian berulang; misalnya karena 1000 = 10 × 10 × 10 = 103, "basis logaritma 10" dari 1000 adalah 3, atau log10 (1000) = 3. Logaritma x ke basis b dinotasikan sebagai logb (x), atau tanpa tanda kurung logbx, bahkan tanpa basis eksplisit log x, ketika tidak ada kebingungan yang mungkin terjadi, atau ketika basis tidak penting seperti dalam notasi O besar.

The logarithm base 10 (that is b = 10) is called the decimal or common logarithm and is commonly used in science and engineering. The natural logarithm has the number e (that is b ≈ 2.718) as its base; its use is widespread in mathematics and physics, because of its simpler integral and derivative. The binary logarithm uses base 2 (that is b = 2) and is frequently used in computer science.

Logarithms were introduced by John Napier in 1614 as a means of simplifying calculations.[1] They were rapidly adopted by navigators, scientists, engineers, surveyors and others to perform high-accuracy computations more easily. Using logarithm tables, tedious multi-digit multiplication steps can be replaced by table look-ups and simpler addition. This is possible because of the fact—important in its own right—that the logarithm of a product is the sum of the logarithms of the factors:

provided that b, x and y are all positive and b ≠ 1. The slide rule, also based on logarithms, allows quick calculations without tables, but at lower precision. The present-day notion of logarithms comes from Leonhard Euler, who connected them to the exponential function in the 18th century, and who also introduced the letter e as the base of natural logarithms.[2]

Logarithmic scales reduce wide-ranging quantities to smaller scopes. For example, the decibel (dB) is a unit used to express ratio as logarithms, mostly for signal power and amplitude (of which sound pressure is a common example). In chemistry, pH is a logarithmic measure for the acidity of an aqueous solution. Logarithms are commonplace in scientific formulae, and in measurements of the complexity of algorithms and of geometric objects called fractals. They help to describe frequency ratios of musical intervals, appear in formulas counting prime numbers or approximating factorials, inform some models in psychophysics, and can aid in forensic accounting.

In the same way as the logarithm reverses exponentiation, the complex logarithm is the inverse function of the exponential function, whether applied to real numbers or complex numbers. The modular discrete logarithm is another variant; it has uses in public-key cryptography.

Motivasi

Grafik yang menunjukkan kurva logaritmik, melintasi sumbu x diantara x= 1 dan mendekati minus tak-hingga sepanjang sumbu-y.
grafik dari basis logaritma 2 memotong sumbu-x antara x = 1 dan melewati titik (2, 1), (4, 2), dan (8, 3) yang menggambarkan log2(8) = 3 dan 23 = 8. Grafik secara arbiter mendekati sumbu-y, tetapi tak-memenuhinya.

Penjumlahan, perkalian, dan eksponen adalah tiga dari operasi aritmetika yang paling mendasar. Kebalikan dari penjumlahan adalah pengurangan, dan kebalikan dari perkalian adalah pembagian. Sehingga, logaritma adalah operasi kebalikan dari eksponen. Eksponen adalah ketika suatu bilangan b, basis dipangkatkan ke pangkat tertentu y, eksponen untuk memberikan nilai x; dilambangkan

Misalnya, dipangkatkan 2 ke pangkat 3 menghasilkan 8, adalah:

Logaritma basis b adalah operasi kebalikan, yang memberikan keluaran y dari masukan x. Artinya, sama dengan jika b adalah bilangan real positif. (Jika b dalam bukan bilangan real positif, eksponensial dan logaritma didefinisikan, tetapi mungkin memerlukan beberapa nilai, yang membuat definisi menjadi lebih rumit.)

Salah satu motivasi historis utama memperkenalkan rumus logaritma adalah

yang memungkinkan (sebelum ditemukannya komputer) untuk mengurangi perhitungan perkalian dan pembagian menjadi penambahan, pengurangan dan pencarian tabel logaritma.

Definisi

Logaritma dapat dipahami secara matematis sebagai anggota fungsi (yang keseluruhannya dilambangkan dengan ) dari . Fungsi logaritma masing-masing hanya berbeda (tetapi tidak sama dengan nol) kelipatan satu sama lain.

Ini diperkenalkan dengan cara yang berbeda pada bilangan real positif. Tergantung pada latar belakang dan niat, Anda akan memilih satu atau pendekatan didaktik lainnya. Definisi yang berbeda dari logaritma real antara satu sama lain ekuivalen dan dibuat dengan fokus khusus pada logaritma alami, yang terjadi secara alami dari sudut pandang para matematikawan, seperti yang dilihat dalam akses melalui integral tak tentu dari .

Sebagai fungsi invers dari fungsi eksponensial

Logaritma ke basis adalah fungsi invers dari fungsi eksponensial pada basis positif , yaitu:

Oleh karena itu, fungsi dan adalah fungsi invers satu sama lain. Logaritma membalikkan eksponensial dan sebaliknya:

Hasil logaritma alami dari basis , dimana

yang adalah bilangan Euler.

Sebagai solusi untuk persamaan fungsional

Fungsi logaritma adalah solusi kontinu non-trivial dari persamaan fungsional

Solusi dapat memenuhi dan bahkan dapat diturunkan. Logaritma alami kemudian diperoleh secara bersama dengan kondisi tambahan

Kondisi tambahan adalah salah satu alasan untuk sebutan logaritma yang diperoleh secara alami. Jikalau mendapatkan logaritma ke basis lain melalui kondisi tambahan, maka yang harus dilakukan adalah

dan selalu membutuhkan logaritma alami lagi.

Solusi trivial dari persamaan fungsional atas adalah fungsi null , yang tidak dianggap sebagai fungsi logaritmik, dan satu-satunya solusi dari persamaan fungsional yang juga didefinisikan .

Karena persamaan fungsional atas, maka dari itu logaritma menyampaikan khususnya pemetaan pelestarian struktur dari bilangan real positif dengan struktur perkalian. Apabila seseorang juga menemukan secara eksplisit ini sebagai suatu kondisi dan dengan demikian sampai pada turunan.

Sebagai isomorfisme

Logaritma bernilai real adalah kontinu dari isomorfisme

.

Definisi ini dengan jelas mendefinisikan fungsi kecuali untuk konstanta perkalian.

Pendekatan aljabar menekankan seperti pendekatan melalui persamaan fungsional signifikansi secara historis logaritma sebagai bantuan perhitungan: Ini memungkinkan perkalian untuk "dikonversi" menjadi penjumlahan.

Sebagai antiturunan dari f dengan f(x)=1/x

Logaritma alami sebagai luas bawah grafik 1/x

Fungsinya adalah

dengan adalah logaritma alami: Ini adalah . Logaritma dengan basis diperoleh dengan membagi fungsi dengan konstanta . Sebagai integral tak wajar dari , atau batas integrasi bawah arbiter (positif), dianggap hanya akan mendapatkan satu tambahan, konstanta aditif, tetapi hanya mendapatkan logaritma ke basis .

Sebagai deret pangkat

Logaritma alami dapat dinyatakan sebagai deret pangkat, yaitu

Deret ini adalah konvergensi untuk dan untuk .

Untuk perhitungan numerik dari nilai untuk pada relasi yang digunakan.

Catatan

Definisi ini juga dapat digunakan untuk mendapatkan logaritma pada struktur matematika lainnya, seperti: sebuah bilangan pada bilangan kompleks. Ini mengasumsikan bahwa konsep yang digunakan untuk definisi ada dalam struktur yang bersangkutan.

Misalnya, untuk mendefinisikan logaritma diskret pada grup, Konsep seperti diferensiasi/integrasi tidak dapat digunakan karena mereka bahkan tidak digunakan. Definisi terjadi karena sebagai inversi eksponen dengan seluruh eksponen, yang pada gilirannya didefinisikan oleh beberapa penggunaan pranala satu grup.

Identitas logaritmik

Beberapa rumus penting, terkadang disebut identitas logaritmik atau hukum logaritma, menghubungkan logaritma satu sama lain.[3]

Darab, hasil bagi, kuasa (pangkat), dan akar

Logaritma dari sebuah darab adalah jumlah logaritma dari bilangan-bilangan tersebut dikalikan; logaritma dari rasio dua bilangan adalah perbedaan dari logaritma. Logaritma dari sebuah kuasa (pangkat) ke-p dari suatu bilangan adalah p dikali logaritma dari bilangan itu sendiri; logaritma dari akar ke-p adalah logaritma dari bilangan dibagi p. Tabel berikut mencantumkan identitas ini dengan contoh. Setiap identitas dapat diturunkan setelah substitusi definisi logaritma atau di sisi kiri.

Rumus Contoh
Darab
Hasil bagi
Kuasa (pangkat)
Akar

Perubahan basis

Logaritma logbx dapat dihitung dari logaritma x dan b sehubungan dengan basis arbiter k menggunakan rumus berikut:

Turunan faktor konversi antara logaritma basis arbitrer

Dimulai dari menentukan identitas

kita menerapkan logk pada kedua ruas persamaan ini, untuk mendapatkan

.

Memecahkan hasil :

,

menunjukkan faktor konversi dari nilai yang diberikan ke nilai- yang sesuai menjadi

Kalkulator ilmiah tipikal menghitung logaritma ke basis 10 dan e.[4] Logaritma sehubungan dengan basis apa pun b ditentukan menggunakan salah satu dari dua logaritma ini dengan rumus sebelumnya:

Diberikan angka x dan logaritmanya y = logbx ke basis tak-diketahui b, basisnya diberikan oleh:

yang dilihat dari mengambil persamaan pendefinisian ke kuasa (pangkat)

Basis khusus

Plot logaritma untuk basis 0,5, 2, dan e

Di antara semua pilihan untuk basis, ketiganya adalah basis khusus. Ini adalah b = 10, b = e (irasional adalah konstanta matematika ≈ 2,71828), dan b = 2 (logaritma biner). Dalam analisa matematika, basis logaritma e tersebar luas karena sifat analitik yang dijelaskan dibawah ini. Di sisi lain, logaritma basis-10 mudah digunakan untuk perhitungan manual dalam sistem bilangan desimal:[5]

Jadi, log10 (x) berhubungan dengan jumlah digit desimal dari bilangan bulat positif x: jumlah digit adalah bilangan bulat terkecil yang lebih besar dari log10 (x).[6] Misalnya, log10(1430) adalah kira-kira 3,15. Bilangan bulat berikutnya adalah 4, yang merupakan jumlah digit 1430. Baik logaritma alami dan logaritma ke basis dua digunakan dalam teori informasi, sesuai dengan penggunaan nat atau bit sebagai satuan dasar informasi masing-masing.[7] Logaritma biner juga digunakan dalam ilmu komputer, dimana sistem biner ada di mana-mana; dalam teori musik, di mana rasio nada dua (oktaf) ada di mana-mana dan sen adalah logaritma biner (skala 1200) rasio antara dua nada yang bertemperatur sama di musik klasik Eropa; dan dalam fotografi untuk mengukur nilai eksposur.[8]

Tabel berikut mencantumkan notasi umum untuk logaritma ke basis ini dan medan dimana mereka digunakan. Banyak disiplin menulis log x yang dialihkan ke logbx, ketika dasar yang dimaksud ditentukan dari konteksnya. Notasi blog x juga muncul.[9] Kolom "notasi ISO" mencantumkan penunjukan yang disarankan oleh Organisasi Internasional untuk Standardisasi (ISO 80000-2).[10] Karena notasi log x telah digunakan untuk ketiga basis (atau jika basisnya tidak tentu atau tidak material), dasar yang dimaksud seringkali harus disimpulkan berdasarkan konteks atau disiplin. Dalam ilmu komputer, log biasanya mengacu pada log2, dan dalam matematika log biasanya mengacu pada loge.[11] Dalam konteks lain, log sering disebut sebagai log10.[12]

Basis b Nama untuk logbx Notasi ISO Notasi lainnya Digunakan dalam
2 logaritma biner lb x[13] ld x, log x, lg x,[14] log2x ilmu komputer, teori informasi, bioinformatika, teori musik, fotografi
e logaritma alami ln x[nb 1] log x
(dalam matematika[18] dan bahasa pemrograman lainnya[nb 2]), logex
matematika, fisika, kimia,
statistik, ekonomi, teori informasi, dan teknik
10 logaritma umum lg x log x, log10x
(dalam bidang teknik, biologi, astronomi)
berbagai bidang teknik (lihat desibel dan lihat di bawah),
logaritma tabel, genggam kalkulator, spektroskopi
b logaritma ke basis b logbx matematika

Sejarah

Sejarah logaritma dimulai dari Eropa abad ketujuh belas adalah penemuan fungsi baru yang memperluas ranah analisis luar cakupan metode aljabar. Metode logaritma dikemukakan secara terbuka oleh John Napier pada tahun 1614, dalam sebuah buku berjudul Mirifici Logarithmorum Canonis Descriptio (Deskripsi Kaidah Logaritma yang Menakjubkan).[19][20] Sebelum penemuan Napier, ada teknik lain dengan cakupan serupa, seperti prosthafaeresis atau penggunaan tabel progresi, yang dikembangkan secara ekstensif oleh Jost Bürgi sekitar tahun 1600.[21][22] Napier menciptakan istilah untuk logaritma dalam bahasa Latin Tengah, “logaritmus” yang berasal dari bahasa Yunani, secara harfiah berarti, “rasio-bilangan,” dari logos “proporsi, rasio, kata” + arithmos “bilangan”.

Logaritma umum suatu bilangan adalah indeks pangkat sepuluh yang sama dengan bilangan tersebut.[23] Berbicara tentang angka yang membutuhkan banyak angka adalah kiasan kasar untuk logaritma umum, dan disebut oleh Archimedes sebagai “urutan bilangan”.[24] Logaritma real pertama adalah metode heuristik untuk mengubah perkalian menjadi penjumlahan, sehingga memudahkan komputasi yang cepat. Beberapa metode ini menggunakan tabel yang diturunkan dari identitas trigonometri.[25] Metode seperti itu disebut prosthafaeresis.

Penemuan fungsi sekarang dikenal sebagai logaritma alami dimulai sebagai upaya untuk kuadratur persegi panjang hiperbola oleh Grégoire de Saint-Vincent ia adalah seorang Yesuit Belgia yang tinggal di Praha. Archimedes telah menulis The Quadrature of the Parabola pada abad ketiga SM, tetapi kuadratur untuk hiperbola menghindari semua upaya sampai Saint-Vincent menerbitkan hasilnya pada tahun 1647. Relasi yang disediakan logaritma antara barisan dan deret geometri dalam argumen dan nilai barisan dan deret aritmetika, A. A. de Sarasa diminta untuk membuat hubungan kuadratur Saint-Vincent dan tradisi logaritma dalam prosthafaeresis, mengarah ke istilah "logaritma hiperbolik", sebuah kata sinonim untuk logaritma alami. Soon the new function was appreciated by Christiaan Huygens, and James Gregory. The notation Log y was adopted by Leibniz in 1675,[26] dan tahun berikutnya dia menghubungkannya ke integral

Sebelum Euler mengembangkan konsep modernnya tentang logaritma alami kompleks, Roger Cotes memiliki hasil yang hampir sama ketika ia menunjukkan pada tahun 1714 bahwa[27]

.

Tabel logaritma, kaidah geser, dan aplikasi historis

1797 Encyclopædia Britannica penjelasan logaritma

Dengan menyederhanakan perhitungan yang sulit sebelum kalkulator dan komputer tersedia, logaritma berkontribusi pada kemajuan ilmu pengetahuan, khususnya astronomi. Mereka sangat penting untuk kemajuan dalam survei, navigasi langit, dan domain lainnya. Pierre-Simon Laplace menyebutkan tentang logaritma

"...[sebuah] kecerdasan mengagumkan yang mengurangi menjadi beberapa hari kerja berbulan-bulan, menggandakan kehidupan astronom, dan menghindarkannya dari kesalahan dan rasa jijik yang tak terpisahkan dari perhitungan panjang."[28]

Sebagai fungsi yang merupakan fungsi invers dari disebut juga sebagai antilogaritma.[29] Saat ini, fungsi ini lebih sering disebut fungsi eksponensial.

Tabel log

Alat utama yang memungkinkan penggunaan praktis logaritma adalah tabel logaritma.[30] Tabel tersebut pertama kali disusun oleh Henry Briggs pada tahun 1617, setelah penemuan Napier tetapi dengan inovasi menggunakan 10 sebagai basis. Tabel pertama Briggs berisi logaritma umum dari semua bilangan bulat dalam rentang 1 hingga 1000, dengan presisi 14 digit. Selanjutnya, tabel dengan cakupan yang meningkat ditulis. Tabel ini mencantumkan nilai untuk bilangan apa pun  dalam rentang tertentu, pada presisi tertentu. Base-10 logarithms were universally used for computation, hence the name common logarithm, since numbers that differ by factors of 10 have logarithms that differ by integers. The common logarithm of x can be separated into an integer part and a fractional part, known as the characteristic and mantissa. Tables of logarithms need only include the mantissa, as the characteristic can be easily determined by counting digits from the decimal point.[31] The characteristic of 10 · x is one plus the characteristic of x, and their mantissas are the same. Thus using a three-digit log table, the logarithm of 3542 is approximated by

Greater accuracy can be obtained by interpolation:

The value of 10x can be determined by reverse look up in the same table, since the logarithm is a monotonic function.

Computations

The product and quotient of two positive numbers c and d were routinely calculated as the sum and difference of their logarithms. The product cd or quotient c/d came from looking up the antilogarithm of the sum or difference, via the same table:

and

For manual calculations that demand any appreciable precision, performing the lookups of the two logarithms, calculating their sum or difference, and looking up the antilogarithm is much faster than performing the multiplication by earlier methods such as prosthaphaeresis, which relies on trigonometric identities.

Calculations of powers and roots are reduced to multiplications or divisions and lookups by

and

Trigonometric calculations were facilitated by tables that contained the common logarithms of trigonometric functions.

Slide rules

Another critical application was the slide rule, a pair of logarithmically divided scales used for calculation. The non-sliding logarithmic scale, Gunter's rule, was invented shortly after Napier's invention. William Oughtred enhanced it to create the slide rule—a pair of logarithmic scales movable with respect to each other. Numbers are placed on sliding scales at distances proportional to the differences between their logarithms. Sliding the upper scale appropriately amounts to mechanically adding logarithms, as illustrated here:

A slide rule: two rectangles with logarithmically ticked axes, arrangement to add the distance from 1 to 2 to the distance from 1 to 3, indicating the product 6.
Schematic depiction of a slide rule. Starting from 2 on the lower scale, add the distance to 3 on the upper scale to reach the product 6. The slide rule works because it is marked such that the distance from 1 to x is proportional to the logarithm of x.

For example, adding the distance from 1 to 2 on the lower scale to the distance from 1 to 3 on the upper scale yields a product of 6, which is read off at the lower part. The slide rule was an essential calculating tool for engineers and scientists until the 1970s, because it allows, at the expense of precision, much faster computation than techniques based on tables.[32]

Analytic properties

A deeper study of logarithms requires the concept of a function. A function is a rule that, given one number, produces another number.[33] An example is the function producing the x-th power of b from any real number x, where the base b is a fixed number. This function is written: f(x) = bx.

Logarithmic function

To justify the definition of logarithms, it is necessary to show that the equation

has a solution x and that this solution is unique, provided that y is positive and that b is positive and unequal to 1. A proof of that fact requires the intermediate value theorem from elementary calculus.[34] This theorem states that a continuous function that produces two values m and n also produces any value that lies between m and n. A function is continuous if it does not "jump", that is, if its graph can be drawn without lifting the pen.

This property can be shown to hold for the function f(x) = bx. Because f takes arbitrarily large and arbitrarily small positive values, any number y > 0 lies between f(x0) and f(x1) for suitable x0 and x1. Hence, the intermediate value theorem ensures that the equation f(x) = y has a solution. Moreover, there is only one solution to this equation, because the function f is strictly increasing (for b > 1), or strictly decreasing (for 0 < b < 1).[35]

The unique solution x is the logarithm of y to base b, logby. The function that assigns to y its logarithm is called logarithm function or logarithmic function (or just logarithm).

The function logbx is essentially characterized by the product formula

More precisely, the logarithm to any base b > 1 is the only increasing function f from the positive reals to the reals satisfying f(b) = 1 and[36]

Inverse function

The graphs of two functions.
The graph of the logarithm function logb (x) (blue) is obtained by reflecting the graph of the function bx (red) at the diagonal line (x = y).

The formula for the logarithm of a power says in particular that for any number x,

In prose, taking the x-th power of b and then the base-b logarithm gives back x. Conversely, given a positive number y, the formula

says that first taking the logarithm and then exponentiating gives back y. Thus, the two possible ways of combining (or composing) logarithms and exponentiation give back the original number. Therefore, the logarithm to base b is the inverse function of f(x) = bx.[37]

Inverse functions are closely related to the original functions. Their graphs correspond to each other upon exchanging the x- and the y-coordinates (or upon reflection at the diagonal line x = y), as shown at the right: a point (t, u = bt) on the graph of f yields a point (u, t = logbu) on the graph of the logarithm and vice versa. As a consequence, logb (x) diverges to infinity (gets bigger than any given number) if x grows to infinity, provided that b is greater than one. In that case, logb(x) is an increasing function. For b < 1, logb (x) tends to minus infinity instead. When x approaches zero, logbx goes to minus infinity for b > 1 (plus infinity for b < 1, respectively).

Derivative and antiderivative

A graph of the logarithm function and a line touching it in one point.
The graph of the natural logarithm (green) and its tangent at x = 1.5 (black)

Analytic properties of functions pass to their inverses.[34] Thus, as f(x) = bx is a continuous and differentiable function, so is logby. Roughly, a continuous function is differentiable if its graph has no sharp "corners". Moreover, as the derivative of f(x) evaluates to ln(b) bx by the properties of the exponential function, the chain rule implies that the derivative of logbx is given by[35][38]

That is, the slope of the tangent touching the graph of the base-b logarithm at the point (x, logb (x)) equals 1/(x ln(b)).

The derivative of ln(x) is 1/x; this implies that ln(x) is the unique antiderivative of 1/x that has the value 0 for x = 1. It is this very simple formula that motivated to qualify as "natural" the natural logarithm; this is also one of the main reasons of the importance of the constant e.

The derivative with a generalized functional argument f(x) is

The quotient at the right hand side is called the logarithmic derivative of f. Computing f'(x) by means of the derivative of ln(f(x)) is known as logarithmic differentiation.[39] The antiderivative of the natural logarithm ln(x) is:[40]

Related formulas, such as antiderivatives of logarithms to other bases can be derived from this equation using the change of bases.[41]

Integral representation of the natural logarithm

A hyperbola with part of the area underneath shaded in grey.
The natural logarithm of t is the shaded area underneath the graph of the function f(x) = 1/x (reciprocal of x).

The natural logarithm of t can be defined as the definite integral:

This definition has the advantage that it does not rely on the exponential function or any trigonometric functions; the definition is in terms of an integral of a simple reciprocal. As an integral, ln(t) equals the area between the x-axis and the graph of the function 1/x, ranging from x = 1 to x = t. This is a consequence of the fundamental theorem of calculus and the fact that the derivative of ln(x) is 1/x. Product and power logarithm formulas can be derived from this definition.[42] For example, the product formula ln(tu) = ln(t) + ln(u) is deduced as:

The equality (1) splits the integral into two parts, while the equality (2) is a change of variable (w = x/t). In the illustration below, the splitting corresponds to dividing the area into the yellow and blue parts. Rescaling the left hand blue area vertically by the factor t and shrinking it by the same factor horizontally does not change its size. Moving it appropriately, the area fits the graph of the function f(x) = 1/x again. Therefore, the left hand blue area, which is the integral of f(x) from t to tu is the same as the integral from 1 to u. This justifies the equality (2) with a more geometric proof.

The hyperbola depicted twice. The area underneath is split into different parts.
A visual proof of the product formula of the natural logarithm

The power formula ln(tr) = r ln(t) may be derived in a similar way:

The second equality uses a change of variables (integration by substitution), w = x1/r.

The sum over the reciprocals of natural numbers,

is called the harmonic series. It is closely tied to the natural logarithm: as n tends to infinity, the difference,

converges (i.e. gets arbitrarily close) to a number known as the Euler–Mascheroni constant γ = 0.5772.... This relation aids in analyzing the performance of algorithms such as quicksort.[43]

Transcendence of the logarithm

Real numbers that are not algebraic are called transcendental;[44] for example, π and e are such numbers, but is not. Almost all real numbers are transcendental. The logarithm is an example of a transcendental function. The Gelfond–Schneider theorem asserts that logarithms usually take transcendental, i.e. "difficult" values.[45]

Calculation

The logarithm keys (LOG for base 10 and LN for base e) on a TI-83 Plus graphing calculator

Logarithms are easy to compute in some cases, such as log10 (1000) = 3. In general, logarithms can be calculated using power series or the arithmetic–geometric mean, or be retrieved from a precalculated logarithm table that provides a fixed precision.[46][47] Newton's method, an iterative method to solve equations approximately, can also be used to calculate the logarithm, because its inverse function, the exponential function, can be computed efficiently.[48] Using look-up tables, CORDIC-like methods can be used to compute logarithms by using only the operations of addition and bit shifts.[49][50] Moreover, the binary logarithm algorithm calculates lb(x) recursively, based on repeated squarings of x, taking advantage of the relation

Power series

Taylor series
An animation showing increasingly good approximations of the logarithm graph.
The Taylor series of ln(z) centered at z = 1. The animation shows the first 10 approximations along with the 99th and 100th. The approximations do not converge beyond a distance of 1 from the center.

For any real number z that satisfies 0 < z ≤ 2, the following formula holds:[nb 3][51]

This is a shorthand for saying that ln(z) can be approximated to a more and more accurate value by the following expressions:

For example, with z = 1.5 the third approximation yields 0.4167, which is about 0.011 greater than ln(1.5) = 0.405465. This series approximates ln(z) with arbitrary precision, provided the number of summands is large enough. In elementary calculus, ln(z) is therefore the limit of this series. It is the Taylor series of the natural logarithm at z = 1. The Taylor series of ln(z) provides a particularly useful approximation to ln(1 + z) when z is small, |z| < 1, since then

For example, with z = 0.1 the first-order approximation gives ln(1.1) ≈ 0.1, which is less than 5% off the correct value 0.0953.

More efficient series

Another series is based on the area hyperbolic tangent function:

for any real number z > 0.[nb 4][51] Using sigma notation, this is also written as

This series can be derived from the above Taylor series. It converges more quickly than the Taylor series, especially if z is close to 1. For example, for z = 1.5, the first three terms of the second series approximate ln(1.5) with an error of about 3×10−6. The quick convergence for z close to 1 can be taken advantage of in the following way: given a low-accuracy approximation y ≈ ln(z) and putting

the logarithm of z is:

The better the initial approximation y is, the closer A is to 1, so its logarithm can be calculated efficiently. A can be calculated using the exponential series, which converges quickly provided y is not too large. Calculating the logarithm of larger z can be reduced to smaller values of z by writing z = a · 10b, so that ln(z) = ln(a) + b · ln(10).

A closely related method can be used to compute the logarithm of integers. Putting in the above series, it follows that:

If the logarithm of a large integer n is known, then this series yields a fast converging series for log(n+1), with a rate of convergence of .

Arithmetic–geometric mean approximation

The arithmetic–geometric mean yields high precision approximations of the natural logarithm. Sasaki and Kanada showed in 1982 that it was particularly fast for precisions between 400 and 1000 decimal places, while Taylor series methods were typically faster when less precision was needed. In their work ln(x) is approximated to a precision of 2p (or p precise bits) by the following formula (due to Carl Friedrich Gauss):[52][53]

Here M(x, y) denotes the arithmetic–geometric mean of x and y. It is obtained by repeatedly calculating the average (x + y)/2 (arithmetic mean) and (geometric mean) of x and y then let those two numbers become the next x and y. The two numbers quickly converge to a common limit which is the value of M(x, y). m is chosen such that

to ensure the required precision. A larger m makes the M(x, y) calculation take more steps (the initial x and y are farther apart so it takes more steps to converge) but gives more precision. The constants π and ln(2) can be calculated with quickly converging series.

Feynman's algorithm

While at Los Alamos National Laboratory working on the Manhattan Project, Richard Feynman developed a bit-processing algorithm that is similar to long division and was later used in the Connection Machine. The algorithm uses the fact that every real number 1 < x < 2 is representable as a product of distinct factors of the form 1 + 2k. The algorithm sequentially builds that product P: if P · (1 + 2k) < x, then it changes P to P · (1 + 2k). It then increases by one regardless. The algorithm stops when k is large enough to give the desired accuracy. Because log(x) is the sum of the terms of the form log(1 + 2k) corresponding to those k for which the factor 1 + 2k was included in the product P, log(x) may be computed by simple addition, using a table of log(1 + 2k) for all k. Any base may be used for the logarithm table.[54]

Applications

A photograph of a nautilus' shell.
A nautilus displaying a logarithmic spiral

Logarithms have many applications inside and outside mathematics. Some of these occurrences are related to the notion of scale invariance. For example, each chamber of the shell of a nautilus is an approximate copy of the next one, scaled by a constant factor. This gives rise to a logarithmic spiral.[55] Benford's law on the distribution of leading digits can also be explained by scale invariance.[56] Logarithms are also linked to self-similarity. For example, logarithms appear in the analysis of algorithms that solve a problem by dividing it into two similar smaller problems and patching their solutions.[57] The dimensions of self-similar geometric shapes, that is, shapes whose parts resemble the overall picture are also based on logarithms. Logarithmic scales are useful for quantifying the relative change of a value as opposed to its absolute difference. Moreover, because the logarithmic function log(x) grows very slowly for large x, logarithmic scales are used to compress large-scale scientific data. Logarithms also occur in numerous scientific formulas, such as the Tsiolkovsky rocket equation, the Fenske equation, or the Nernst equation.

Logarithmic scale

A graph of the value of one mark over time. The line showing its value is increasing very quickly, even with logarithmic scale.
A logarithmic chart depicting the value of one Goldmark in Papiermarks during the German hyperinflation in the 1920s

Scientific quantities are often expressed as logarithms of other quantities, using a logarithmic scale. For example, the decibel is a unit of measurement associated with logarithmic-scale quantities. It is based on the common logarithm of ratios—10 times the common logarithm of a power ratio or 20 times the common logarithm of a voltage ratio. It is used to quantify the loss of voltage levels in transmitting electrical signals,[58] to describe power levels of sounds in acoustics,[59] and the absorbance of light in the fields of spectrometry and optics. The signal-to-noise ratio describing the amount of unwanted noise in relation to a (meaningful) signal is also measured in decibels.[60] In a similar vein, the peak signal-to-noise ratio is commonly used to assess the quality of sound and image compression methods using the logarithm.[61]

The strength of an earthquake is measured by taking the common logarithm of the energy emitted at the quake. This is used in the moment magnitude scale or the Richter magnitude scale. For example, a 5.0 earthquake releases 32 times (101.5) and a 6.0 releases 1000 times (103) the energy of a 4.0.[62] Apparent magnitude measures the brightness of stars logarithmically.[63] In chemistry the negative of the decimal logarithm, the decimal cologarithm, is indicated by the letter p.[64] For instance, pH is the decimal cologarithm of the activity of hydronium ions (the form hydrogen ions H+ take in water).[65] The activity of hydronium ions in neutral water is 10−7 mol·L−1, hence a pH of 7. Vinegar typically has a pH of about 3. The difference of 4 corresponds to a ratio of 104 of the activity, that is, vinegar's hydronium ion activity is about 10−3 mol·L−1.

Semilog (log–linear) graphs use the logarithmic scale concept for visualization: one axis, typically the vertical one, is scaled logarithmically. For example, the chart at the right compresses the steep increase from 1 million to 1 trillion to the same space (on the vertical axis) as the increase from 1 to 1 million. In such graphs, exponential functions of the form f(x) = a · bx appear as straight lines with slope equal to the logarithm of b. Log-log graphs scale both axes logarithmically, which causes functions of the form f(x) = a · xk to be depicted as straight lines with slope equal to the exponent k. This is applied in visualizing and analyzing power laws.[66]

Psychology

Logarithms occur in several laws describing human perception:[67][68] Hick's law proposes a logarithmic relation between the time individuals take to choose an alternative and the number of choices they have.[69] Fitts's law predicts that the time required to rapidly move to a target area is a logarithmic function of the distance to and the size of the target.[70] In psychophysics, the Weber–Fechner law proposes a logarithmic relationship between stimulus and sensation such as the actual vs. the perceived weight of an item a person is carrying.[71] (This "law", however, is less realistic than more recent models, such as Stevens's power law.[72])

Psychological studies found that individuals with little mathematics education tend to estimate quantities logarithmically, that is, they position a number on an unmarked line according to its logarithm, so that 10 is positioned as close to 100 as 100 is to 1000. Increasing education shifts this to a linear estimate (positioning 1000 10 times as far away) in some circumstances, while logarithms are used when the numbers to be plotted are difficult to plot linearly.[73][74]

Probability theory and statistics

Three asymmetric PDF curves
Three probability density functions (PDF) of random variables with log-normal distributions. The location parameter μ, which is zero for all three of the PDFs shown, is the mean of the logarithm of the random variable, not the mean of the variable itself.
A bar chart and a superimposed second chart. The two differ slightly, but both decrease in a similar fashion.
Distribution of first digits (in %, red bars) in the population of the 237 countries of the world. Black dots indicate the distribution predicted by Benford's law.

Logarithms arise in probability theory: the law of large numbers dictates that, for a fair coin, as the number of coin-tosses increases to infinity, the observed proportion of heads approaches one-half. The fluctuations of this proportion about one-half are described by the law of the iterated logarithm.[75]

Logarithms also occur in log-normal distributions. When the logarithm of a random variable has a normal distribution, the variable is said to have a log-normal distribution.[76] Log-normal distributions are encountered in many fields, wherever a variable is formed as the product of many independent positive random variables, for example in the study of turbulence.[77]

Logarithms are used for maximum-likelihood estimation of parametric statistical models. For such a model, the likelihood function depends on at least one parameter that must be estimated. A maximum of the likelihood function occurs at the same parameter-value as a maximum of the logarithm of the likelihood (the "log likelihood"), because the logarithm is an increasing function. The log-likelihood is easier to maximize, especially for the multiplied likelihoods for independent random variables.[78]

Benford's law describes the occurrence of digits in many data sets, such as heights of buildings. According to Benford's law, the probability that the first decimal-digit of an item in the data sample is d (from 1 to 9) equals log10 (d + 1) − log10 (d), regardless of the unit of measurement.[79] Thus, about 30% of the data can be expected to have 1 as first digit, 18% start with 2, etc. Auditors examine deviations from Benford's law to detect fraudulent accounting.[80]

Computational complexity

Analysis of algorithms is a branch of computer science that studies the performance of algorithms (computer programs solving a certain problem).[81] Logarithms are valuable for describing algorithms that divide a problem into smaller ones, and join the solutions of the subproblems.[82]

For example, to find a number in a sorted list, the binary search algorithm checks the middle entry and proceeds with the half before or after the middle entry if the number is still not found. This algorithm requires, on average, log2 (N) comparisons, where N is the list's length.[83] Similarly, the merge sort algorithm sorts an unsorted list by dividing the list into halves and sorting these first before merging the results. Merge sort algorithms typically require a time approximately proportional to N · log(N).[84] The base of the logarithm is not specified here, because the result only changes by a constant factor when another base is used. A constant factor is usually disregarded in the analysis of algorithms under the standard uniform cost model.[85]

A function f(x) is said to grow logarithmically if f(x) is (exactly or approximately) proportional to the logarithm of x. (Biological descriptions of organism growth, however, use this term for an exponential function.[86]) For example, any natural number N can be represented in binary form in no more than log2N + 1 bits. In other words, the amount of memory needed to store N grows logarithmically with N.

Entropy and chaos

An oval shape with the trajectories of two particles.
Billiards on an oval billiard table. Two particles, starting at the center with an angle differing by one degree, take paths that diverge chaotically because of reflections at the boundary.

Entropy is broadly a measure of the disorder of some system. In statistical thermodynamics, the entropy S of some physical system is defined as

The sum is over all possible states i of the system in question, such as the positions of gas particles in a container. Moreover, pi is the probability that the state i is attained and k is the Boltzmann constant. Similarly, entropy in information theory measures the quantity of information. If a message recipient may expect any one of N possible messages with equal likelihood, then the amount of information conveyed by any one such message is quantified as log2N bits.[87]

Lyapunov exponents use logarithms to gauge the degree of chaoticity of a dynamical system. For example, for a particle moving on an oval billiard table, even small changes of the initial conditions result in very different paths of the particle. Such systems are chaotic in a deterministic way, because small measurement errors of the initial state predictably lead to largely different final states.[88] At least one Lyapunov exponent of a deterministically chaotic system is positive.

Fractals

Parts of a triangle are removed in an iterated way.
The Sierpinski triangle (at the right) is constructed by repeatedly replacing equilateral triangles by three smaller ones.

Logarithms occur in definitions of the dimension of fractals.[89] Fractals are geometric objects that are self-similar: small parts reproduce, at least roughly, the entire global structure. The Sierpinski triangle (pictured) can be covered by three copies of itself, each having sides half the original length. This makes the Hausdorff dimension of this structure ln(3)/ln(2) ≈ 1.58. Another logarithm-based notion of dimension is obtained by counting the number of boxes needed to cover the fractal in question.

Music

Four different octaves shown on a linear scale.
Four different octaves shown on a logarithmic scale.
Four different octaves shown on a linear scale, then shown on a logarithmic scale (as the ear hears them).

Logarithms are related to musical tones and intervals. In equal temperament, the frequency ratio depends only on the interval between two tones, not on the specific frequency, or pitch, of the individual tones. For example, the note A has a frequency of 440 Hz and B-flat has a frequency of 466 Hz. The interval between A and B-flat is a semitone, as is the one between B-flat and B (frequency 493 Hz). Accordingly, the frequency ratios agree:

Therefore, logarithms can be used to describe the intervals: an interval is measured in semitones by taking the base-21/12 logarithm of the frequency ratio, while the base-21/1200 logarithm of the frequency ratio expresses the interval in cents, hundredths of a semitone. The latter is used for finer encoding, as it is needed for non-equal temperaments.[90]

Interval
(the two tones are played at the same time)
1/12 tone play Semitone play Just major third play Major third play Tritone play Octave play
Frequency ratio r
Corresponding number of semitones
Corresponding number of cents

Number theory

Natural logarithms are closely linked to counting prime numbers (2, 3, 5, 7, 11, ...), an important topic in number theory. For any integer x, the quantity of prime numbers less than or equal to x is denoted π(x). The prime number theorem asserts that π(x) is approximately given by

in the sense that the ratio of π(x) and that fraction approaches 1 when x tends to infinity.[91] As a consequence, the probability that a randomly chosen number between 1 and x is prime is inversely proportional to the number of decimal digits of x. A far better estimate of π(x) is given by the offset logarithmic integral function Li(x), defined by

The Riemann hypothesis, one of the oldest open mathematical conjectures, can be stated in terms of comparing π(x) and Li(x).[92] The Erdős–Kac theorem describing the number of distinct prime factors also involves the natural logarithm.

The logarithm of n factorial, n! = 1 · 2 · ... · n, is given by

This can be used to obtain Stirling's formula, an approximation of n! for large n.[93]

Generalizations

Complex logarithm

An illustration of the polar form: a point is described by an arrow or equivalently by its length and angle to the x-axis.
Polar form of z = x + iy. Both φ and φ' are arguments of z.

All the complex numbers a that solve the equation

are called complex logarithms of z, when z is (considered as) a complex number. A complex number is commonly represented as z = x + iy, where x and y are real numbers and i is an imaginary unit, the square of which is −1. Such a number can be visualized by a point in the complex plane, as shown at the right. The polar form encodes a non-zero complex number z by its absolute value, that is, the (positive, real) distance r to the origin, and an angle between the real (x) axis Re and the line passing through both the origin and z. This angle is called the argument of z.

The absolute value r of z is given by

Using the geometrical interpretation of sine and cosine and their periodicity in 2π, any complex number z may be denoted as

for any integer number k. Evidently the argument of z is not uniquely specified: both φ and φ' = φ + 2kπ are valid arguments of z for all integers k, because adding 2kπ radians or k⋅360°[nb 5] to φ corresponds to "winding" around the origin counter-clock-wise by k turns. The resulting complex number is always z, as illustrated at the right for k = 1. One may select exactly one of the possible arguments of z as the so-called principal argument, denoted Arg(z), with a capital A, by requiring φ to belong to one, conveniently selected turn, e.g. π < φπ[94] or 0 ≤ φ < 2π.[95] These regions, where the argument of z is uniquely determined are called branches of the argument function.

A density plot. In the middle there is a black point, at the negative axis the hue jumps sharply and evolves smoothly otherwise.
The principal branch (-π, π) of the complex logarithm, Log(z). The black point at z = 1 corresponds to absolute value zero and brighter, more saturated colors refer to bigger absolute values. The hue of the color encodes the argument of Log(z).

Euler's formula connects the trigonometric functions sine and cosine to the complex exponential:

Using this formula, and again the periodicity, the following identities hold:[96]

where ln(r) is the unique real natural logarithm, ak denote the complex logarithms of z, and k is an arbitrary integer. Therefore, the complex logarithms of z, which are all those complex values ak for which the ak-th power of e equals z, are the infinitely many values

for arbitrary integers k.

Taking k such that φ + 2kπ is within the defined interval for the principal arguments, then ak is called the principal value of the logarithm, denoted Log(z), again with a capital L. The principal argument of any positive real number x is 0; hence Log(x) is a real number and equals the real (natural) logarithm. However, the above formulas for logarithms of products and powers do not generalize to the principal value of the complex logarithm.[97]

The illustration at the right depicts Log(z), confining the arguments of z to the interval (−π, π]. This way the corresponding branch of the complex logarithm has discontinuities all along the negative real x axis, which can be seen in the jump in the hue there. This discontinuity arises from jumping to the other boundary in the same branch, when crossing a boundary, i.e. not changing to the corresponding k-value of the continuously neighboring branch. Such a locus is called a branch cut. Dropping the range restrictions on the argument makes the relations "argument of z", and consequently the "logarithm of z", multi-valued functions.

Inverses of other exponential functions

Exponentiation occurs in many areas of mathematics and its inverse function is often referred to as the logarithm. For example, the logarithm of a matrix is the (multi-valued) inverse function of the matrix exponential.[98] Another example is the p-adic logarithm, the inverse function of the p-adic exponential. Both are defined via Taylor series analogous to the real case.[99] In the context of differential geometry, the exponential map maps the tangent space at a point of a manifold to a neighborhood of that point. Its inverse is also called the logarithmic (or log) map.[100]

In the context of finite groups exponentiation is given by repeatedly multiplying one group element b with itself. The discrete logarithm is the integer n solving the equation

where x is an element of the group. Carrying out the exponentiation can be done efficiently, but the discrete logarithm is believed to be very hard to calculate in some groups. This asymmetry has important applications in public key cryptography, such as for example in the Diffie–Hellman key exchange, a routine that allows secure exchanges of cryptographic keys over unsecured information channels.[101] Zech's logarithm is related to the discrete logarithm in the multiplicative group of non-zero elements of a finite field.[102]

Further logarithm-like inverse functions include the double logarithm ln(ln(x)), the super- or hyper-4-logarithm (a slight variation of which is called iterated logarithm in computer science), the Lambert W function, and the logit. They are the inverse functions of the double exponential function, tetration, of f(w) = wew,[103] and of the logistic function, respectively.[104]

From the perspective of group theory, the identity log(cd) = log(c) + log(d) expresses a group isomorphism between positive reals under multiplication and reals under addition. Logarithmic functions are the only continuous isomorphisms between these groups.[105] By means of that isomorphism, the Haar measure (Lebesgue measuredx on the reals corresponds to the Haar measure dx/x on the positive reals.[106] The non-negative reals not only have a multiplication, but also have addition, and form a semiring, called the probability semiring; this is in fact a semifield. The logarithm then takes multiplication to addition (log multiplication), and takes addition to log addition (LogSumExp), giving an isomorphism of semirings between the probability semiring and the log semiring.

Logarithmic one-forms df/f appear in complex analysis and algebraic geometry as differential forms with logarithmic poles.[107]

The polylogarithm is the function defined by

It is related to the natural logarithm by Li1 (z) = −ln(1 − z). Moreover, Lis (1) equals the Riemann zeta function ζ(s).[108]

See also

Notes

  1. ^ Beberapa matematikawan tidak menyetujui notasi ini. Dalam otobiografinya tahun 1985, Paul Halmos mengkritik apa yang dianggapnya sebagai "notasi ln kekanak-kanakan", yang menurutnya tidak pernah digunakan oleh matematikawan.[15] Notasi ini ditemukan oleh Irving Stringham, seorang matematikawan.[16][17]
  2. ^ Misalnya C, Java, Haskell, dan BASIC.
  3. ^ The same series holds for the principal value of the complex logarithm for complex numbers z satisfying |z − 1| < 1.
  4. ^ The same series holds for the principal value of the complex logarithm for complex numbers z with positive real part.
  5. ^ See radian for the conversion between 2π and 360 degree.

References

  1. ^ Hobson, Ernest William (1914), John Napier and the invention of logarithms, 1614; a lecture, University of California Libraries, Cambridge : University Press 
  2. ^ Remmert, Reinhold. (1991), Theory of complex functions, New York: Springer-Verlag, ISBN 0387971955, OCLC 21118309 
  3. ^ Semua pernyataan di bagian ini dapat ditemukan di Shailesh Shirali 2002, section 4, (Douglas Downing 2003, p. 275), or Kate & Bhapkar 2009, p. 1-1, misalnya.
  4. ^ Bernstein, Stephen; Bernstein, Ruth (1999), Garis besar teori Schaum dan masalah elemen statistik. I, Statistik deskriptif dan probabilitas, Schaum's outline series, New York: McGraw-Hill, ISBN 978-0-07-005023-5 , p. 21
  5. ^ Downing, Douglas (2003), Algebra the Easy Way, Barron's Educational Series, Hauppauge, NY: Barron's, ISBN 978-0-7641-1972-9 , bab 17, hal. 275
  6. ^ Wegener, Ingo (2005), Complexity theory: exploring the limits of efficient algorithms, Berlin, New York: Springer-Verlag, ISBN 978-3-540-21045-0 , hal.20
  7. ^ Van der Lubbe, Jan C. A. (1997), Information Theory, Cambridge University Press, hlm. 3, ISBN 978-0-521-46760-5 
  8. ^ Allen, Elizabeth; Triantaphillidou, Sophie (2011), The Manual of Photography, Taylor & Francis, hlm. 228, ISBN 978-0-240-52037-7 
  9. ^ Franz Embacher; Petra Oberhuemer, Mathematisches Lexikon (dalam bahasa Jerman), mathe online: für Schule, Fachhochschule, Universität unde Selbststudium, diakses tanggal 22 Maret 2011 
  10. ^ Kuantitas dan satuan – Bagian 2: Matematika (ISO 80000-2:2019); EN ISO 80000-2
  11. ^ Goodrich, Michael T.; Tamassia, Roberto (2002), Algorithm Design: Foundations, Analysis, and Internet Examples, John Wiley & Sons, hlm. 23, Salah satu aspek yang menarik dan terkadang mengejutkan dari analisis struktur data dan algoritma adalah keberadaan logaritma di mana-mana ... Seperti kebiasaan dalam literatur komputasi, kami menghilangkan penulisan basis b dari logaritma ketika b = 2. 
  12. ^ Parkhurst, David F. (2007), Introduction to Applied Mathematics for Environmental Science (edisi ke-illustrated), Springer Science & Business Media, hlm. 288, ISBN 978-0-387-34228-3 
  13. ^ Gullberg, Jan (1997), Mathematics: from the birth of numbers.Perlu mendaftar (gratis), New York: W. W. Norton & Co, ISBN 978-0-393-04002-9 
  14. ^ Lihat catatan kaki 1 di Perl, Yehoshua; Reingold, Edward M. (December 1977), "Understanding the complexity of interpolation search", Information Processing Letters, 6 (6): 219–22, doi:10.1016/0020-0190(77)90072-2 
  15. ^ Paul Halmos (1985), I Want to Be a Mathematician: An Automathography, Berlin, New York: Springer-Verlag, ISBN 978-0-387-96078-4 
  16. ^ Irving Stringham (1893), Uniplanar algebra: being part I of a propædeutic to the higher mathematical analysis, The Berkeley Press, hlm. xiii 
  17. ^ Roy S. Freedman (2006), Introduction to Financial Technology, Amsterdam: Academic Press, hlm. 59, ISBN 978-0-12-370478-8 
  18. ^ Lihat Teorema 3.29 di Rudin, Walter (1984), Principles of mathematical analysis (edisi ke-3rd ed., International student), Auckland: McGraw-Hill International, ISBN 978-0-07-085613-4 
  19. ^ Napier, John (1614), Mirifici Logarithmorum Canonis Descriptio [The Description of the Wonderful Rule of Logarithms] (dalam bahasa Latin), Edinburgh, Scotland: Andrew Hart 
  20. ^ Hobson, Ernest William (1914), John Napier and the invention of logarithms, 1614, Cambridge: The University Press 
  21. ^ Folkerts, Menso; Launert, Dieter; Thom, Andreas (2016), "Jost Bürgi's method for calculating sines", Historia Mathematica, 43 (2): 133–147, arXiv:1510.03180alt=Dapat diakses gratis, doi:10.1016/j.hm.2016.03.001, MR 3489006 
  22. ^ Templat:Mactutor
  23. ^ William Gardner (1742) Tables of Logarithms
  24. ^ Pierce, R. C. Jr. (January 1977), "A brief history of logarithms", The Two-Year College Mathematics Journal, 8 (1): 22–26, doi:10.2307/3026878, JSTOR 3026878 
  25. ^ Enrique Gonzales-Velasco (2011) Journey through Mathematics – Creative Episodes in its History, §2.4 Hyperbolic logarithms, p. 117, Springer ISBN 978-0-387-92153-2
  26. ^ Florian Cajori (1913) "History of the exponential and logarithm concepts", American Mathematical Monthly 20: 5, 35, 75, 107, 148, 173, 205.
  27. ^ Stillwell, J. (2010), Mathematics and Its History (edisi ke-3rd), Springer 
  28. ^ Bryant, Walter W. (1907), A History of Astronomy, London: Methuen & Co , p. 44
  29. ^ Abramowitz, Milton; Stegun, Irene A., ed. (1972), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (edisi ke-10th), New York: Dover Publications, ISBN 978-0-486-61272-0 , bagian 4.7., hal. 89
  30. ^ Campbell-Kelly, Martin (2003), The history of mathematical tables: from Sumer to spreadsheets, Oxford scholarship online, Oxford University Press, ISBN 978-0-19-850841-0 , bagian 2
  31. ^ Spiegel, Murray R.; Moyer, R.E. (2006), Schaum's outline of college algebra, Schaum's outline series, New York: McGraw-Hill, ISBN 978-0-07-145227-4 , p. 264
  32. ^ Maor, Eli (2009), E: The Story of a Number, Princeton University Press, sections 1, 13, ISBN 978-0-691-14134-3 
  33. ^ Devlin, Keith (2004), Sets, functions, and logic: an introduction to abstract mathematics, Chapman & Hall/CRC mathematics (edisi ke-3rd), Boca Raton, Fla: Chapman & Hall/CRC, ISBN 978-1-58488-449-1 , or see the references in function
  34. ^ a b Lang, Serge (1997), Undergraduate analysis, Undergraduate Texts in Mathematics (edisi ke-2nd), Berlin, New York: Springer-Verlag, doi:10.1007/978-1-4757-2698-5, ISBN 978-0-387-94841-6, MR 1476913 , section III.3
  35. ^ a b Lang 1997, section IV.2
  36. ^ Dieudonné, Jean (1969), Foundations of Modern Analysis, 1, Academic Press, hlm. 84  item (4.3.1)
  37. ^ Stewart, James (2007), Single Variable Calculus: Early Transcendentals, Belmont: Thomson Brooks/Cole, ISBN 978-0-495-01169-9 , section 1.6
  38. ^ "Calculation of d/dx(Log(b,x))", Wolfram Alpha, Wolfram Research, diakses tanggal 15 March 2011 
  39. ^ Kline, Morris (1998), Calculus: an intuitive and physical approach, Dover books on mathematics, New York: Dover Publications, ISBN 978-0-486-40453-0 , p. 386
  40. ^ "Calculation of Integrate(ln(x))", Wolfram Alpha, Wolfram Research, diakses tanggal 15 March 2011 
  41. ^ Abramowitz & Stegun, eds. 1972, p. 69
  42. ^ Courant, Richard (1988), Differential and integral calculus. Vol. I, Wiley Classics Library, New York: John Wiley & Sons, ISBN 978-0-471-60842-4, MR 1009558 , section III.6
  43. ^ Havil, Julian (2003), Gamma: Exploring Euler's Constant, Princeton University Press, ISBN 978-0-691-09983-5 , sections 11.5 and 13.8
  44. ^ Nomizu, Katsumi (1996), Selected papers on number theory and algebraic geometry, 172, Providence, RI: AMS Bookstore, hlm. 21, ISBN 978-0-8218-0445-2 
  45. ^ Baker, Alan (1975), Transcendental number theory, Cambridge University Press, ISBN 978-0-521-20461-3 , p. 10
  46. ^ Muller, Jean-Michel (2006), Elementary functions (edisi ke-2nd), Boston, MA: Birkhäuser Boston, ISBN 978-0-8176-4372-0 , sections 4.2.2 (p. 72) and 5.5.2 (p. 95)
  47. ^ Hart; Cheney; Lawson; et al. (1968), Computer Approximations, SIAM Series in Applied Mathematics, New York: John Wiley , section 6.3, pp. 105–11
  48. ^ Zhang, M.; Delgado-Frias, J.G.; Vassiliadis, S. (1994), "Table driven Newton scheme for high precision logarithm generation", IEE Proceedings - Computers and Digital Techniques, 141 (5): 281–92, doi:10.1049/ip-cdt:19941268, ISSN 1350-2387 , section 1 for an overview
  49. ^ Meggitt, J.E. (April 1962), "Pseudo Division and Pseudo Multiplication Processes", IBM Journal of Research and Development, 6 (2): 210–26, doi:10.1147/rd.62.0210 
  50. ^ Kahan, W. (20 May 2001), Pseudo-Division Algorithms for Floating-Point Logarithms and Exponentials 
  51. ^ a b Abramowitz & Stegun, eds. 1972, p. 68
  52. ^ Sasaki, T.; Kanada, Y. (1982), "Practically fast multiple-precision evaluation of log(x)", Journal of Information Processing, 5 (4): 247–50, diakses tanggal 30 March 2011 
  53. ^ Ahrendt, Timm (1999), "Fast Computations of the Exponential Function", Stacs 99, Lecture notes in computer science, 1564, Berlin, New York: Springer, hlm. 302–12, doi:10.1007/3-540-49116-3_28, ISBN 978-3-540-65691-3 
  54. ^ Hillis, Danny (15 January 1989), "Richard Feynman and The Connection Machine", Physics Today, 42 (2): 78, Bibcode:1989PhT....42b..78H, doi:10.1063/1.881196 
  55. ^ Maor 2009, p. 135
  56. ^ Frey, Bruce (2006), Statistics hacks, Hacks Series, Sebastopol, CA: O'Reilly, ISBN 978-0-596-10164-0 , chapter 6, section 64
  57. ^ Ricciardi, Luigi M. (1990), Lectures in applied mathematics and informatics, Manchester: Manchester University Press, ISBN 978-0-7190-2671-3 , p. 21, section 1.3.2
  58. ^ Bakshi, U.A. (2009), Telecommunication Engineering, Pune: Technical Publications, ISBN 978-81-8431-725-1 , section 5.2
  59. ^ Maling, George C. (2007), "Noise", dalam Rossing, Thomas D., Springer handbook of acoustics, Berlin, New York: Springer-Verlag, ISBN 978-0-387-30446-5 , section 23.0.2
  60. ^ Tashev, Ivan Jelev (2009), Sound Capture and Processing: Practical Approaches, New York: John Wiley & Sons, hlm. 98, ISBN 978-0-470-31983-3 
  61. ^ Chui, C.K. (1997), Wavelets: a mathematical tool for signal processing, SIAM monographs on mathematical modeling and computation, Philadelphia: Society for Industrial and Applied Mathematics, ISBN 978-0-89871-384-8 
  62. ^ Crauder, Bruce; Evans, Benny; Noell, Alan (2008), Functions and Change: A Modeling Approach to College Algebra (edisi ke-4th), Boston: Cengage Learning, ISBN 978-0-547-15669-9 , section 4.4.
  63. ^ Bradt, Hale (2004), Astronomy methods: a physical approach to astronomical observations, Cambridge Planetary Science, Cambridge University Press, ISBN 978-0-521-53551-9 , section 8.3, p. 231
  64. ^ Nørby, Jens (2000). "The origin and the meaning of the little p in pH". Trends in Biochemical Sciences. 25 (1): 36–37. doi:10.1016/S0968-0004(99)01517-0. PMID 10637613. 
  65. ^ IUPAC (1997), A. D. McNaught, A. Wilkinson, ed., Compendium of Chemical Terminology ("Gold Book") (edisi ke-2nd), Oxford: Blackwell Scientific Publications, doi:10.1351/goldbookalt=Dapat diakses gratis, ISBN 978-0-9678550-9-7 
  66. ^ Bird, J.O. (2001), Newnes engineering mathematics pocket book (edisi ke-3rd), Oxford: Newnes, ISBN 978-0-7506-4992-6 , section 34
  67. ^ Goldstein, E. Bruce (2009), Encyclopedia of Perception, Encyclopedia of Perception, Thousand Oaks, CA: Sage, ISBN 978-1-4129-4081-8 , pp. 355–56
  68. ^ Matthews, Gerald (2000), Human Performance: Cognition, Stress, and Individual Differences, Hove: Psychology Press, ISBN 978-0-415-04406-6 , p. 48
  69. ^ Welford, A.T. (1968), Fundamentals of skill, London: Methuen, ISBN 978-0-416-03000-6, OCLC 219156 , p. 61
  70. ^ Paul M. Fitts (June 1954), "The information capacity of the human motor system in controlling the amplitude of movement", Journal of Experimental Psychology, 47 (6): 381–91, doi:10.1037/h0055392, PMID 13174710  , reprinted in Paul M. Fitts (1992), "The information capacity of the human motor system in controlling the amplitude of movement" (PDF), Journal of Experimental Psychology: General, 121 (3): 262–69, doi:10.1037/0096-3445.121.3.262, PMID 1402698, diakses tanggal 30 March 2011 
  71. ^ Banerjee, J.C. (1994), Encyclopaedic dictionary of psychological terms, New Delhi: M.D. Publications, hlm. 304, ISBN 978-81-85880-28-0, OCLC 33860167 
  72. ^ Nadel, Lynn (2005), Encyclopedia of cognitive science, New York: John Wiley & Sons, ISBN 978-0-470-01619-0 , lemmas Psychophysics and Perception: Overview
  73. ^ Siegler, Robert S.; Opfer, John E. (2003), "The Development of Numerical Estimation. Evidence for Multiple Representations of Numerical Quantity" (PDF), Psychological Science, 14 (3): 237–43, CiteSeerX 10.1.1.727.3696alt=Dapat diakses gratis, doi:10.1111/1467-9280.02438, PMID 12741747, diarsipkan dari versi asli (PDF) tanggal 17 May 2011, diakses tanggal 7 January 2011 
  74. ^ Dehaene, Stanislas; Izard, Véronique; Spelke, Elizabeth; Pica, Pierre (2008), "Log or Linear? Distinct Intuitions of the Number Scale in Western and Amazonian Indigene Cultures", Science, 320 (5880): 1217–20, Bibcode:2008Sci...320.1217D, CiteSeerX 10.1.1.362.2390alt=Dapat diakses gratis, doi:10.1126/science.1156540, PMC 2610411alt=Dapat diakses gratis, PMID 18511690 
  75. ^ Breiman, Leo (1992), Probability, Classics in applied mathematics, Philadelphia: Society for Industrial and Applied Mathematics, ISBN 978-0-89871-296-4 , section 12.9
  76. ^ Aitchison, J.; Brown, J.A.C. (1969), The lognormal distribution, Cambridge University Press, ISBN 978-0-521-04011-2, OCLC 301100935 
  77. ^ Jean Mathieu and Julian Scott (2000), An introduction to turbulent flow, Cambridge University Press, hlm. 50, ISBN 978-0-521-77538-0 
  78. ^ Rose, Colin; Smith, Murray D. (2002), Mathematical statistics with Mathematica, Springer texts in statistics, Berlin, New York: Springer-Verlag, ISBN 978-0-387-95234-5 , section 11.3
  79. ^ Tabachnikov, Serge (2005), Geometry and Billiards, Providence, RI: American Mathematical Society, hlm. 36–40, ISBN 978-0-8218-3919-5 , section 2.1
  80. ^ Durtschi, Cindy; Hillison, William; Pacini, Carl (2004), "The Effective Use of Benford's Law in Detecting Fraud in Accounting Data" (PDF), Journal of Forensic Accounting, V: 17–34, diarsipkan dari versi asli (PDF) tanggal 29 August 2017, diakses tanggal 28 May 2018 
  81. ^ Wegener, Ingo (2005), Complexity theory: exploring the limits of efficient algorithms, Berlin, New York: Springer-Verlag, ISBN 978-3-540-21045-0 , pp. 1–2
  82. ^ Harel, David; Feldman, Yishai A. (2004), Algorithmics: the spirit of computing, New York: Addison-Wesley, ISBN 978-0-321-11784-7 , p. 143
  83. ^ Knuth, Donald (1998), The Art of Computer Programming, Reading, MA: Addison-Wesley, ISBN 978-0-201-89685-5 , section 6.2.1, pp. 409–26
  84. ^ Donald Knuth 1998, section 5.2.4, pp. 158–68
  85. ^ Wegener, Ingo (2005), Complexity theory: exploring the limits of efficient algorithms, Berlin, New York: Springer-Verlag, hlm. 20, ISBN 978-3-540-21045-0 
  86. ^ Mohr, Hans; Schopfer, Peter (1995), Plant physiologyPerlu mendaftar (gratis), Berlin, New York: Springer-Verlag, ISBN 978-3-540-58016-4 , chapter 19, p. 298
  87. ^ Eco, Umberto (1989), The open work, Harvard University Press, ISBN 978-0-674-63976-8 , section III.I
  88. ^ Sprott, Julien Clinton (2010), "Elegant Chaos: Algebraically Simple Chaotic Flows", Elegant Chaos: Algebraically Simple Chaotic Flows. Edited by Sprott Julien Clinton. Published by World Scientific Publishing Co. Pte. Ltd, New Jersey: World Scientific, Bibcode:2010ecas.book.....S, doi:10.1142/7183, ISBN 978-981-283-881-0 , section 1.9
  89. ^ Helmberg, Gilbert (2007), Getting acquainted with fractals, De Gruyter Textbook, Berlin, New York: Walter de Gruyter, ISBN 978-3-11-019092-2 
  90. ^ Wright, David (2009), Mathematics and music, Providence, RI: AMS Bookstore, ISBN 978-0-8218-4873-9 , chapter 5
  91. ^ Bateman, P.T.; Diamond, Harold G. (2004), Analytic number theory: an introductory course, New Jersey: World Scientific, ISBN 978-981-256-080-3, OCLC 492669517 , theorem 4.1
  92. ^ P. T. Bateman & Diamond 2004, Theorem 8.15
  93. ^ Slomson, Alan B. (1991), An introduction to combinatorics, London: CRC Press, ISBN 978-0-412-35370-3 , chapter 4
  94. ^ Ganguly, S. (2005), Elements of Complex Analysis, Kolkata: Academic Publishers, ISBN 978-81-87504-86-3 , Definition 1.6.3
  95. ^ Nevanlinna, Rolf Herman; Paatero, Veikko (2007), "Introduction to complex analysis", London: Hilger, Providence, RI: AMS Bookstore, Bibcode:1974aitc.book.....W, ISBN 978-0-8218-4399-4 , section 5.9
  96. ^ Moore, Theral Orvis; Hadlock, Edwin H. (1991), Complex analysis, Singapore: World Scientific, ISBN 978-981-02-0246-0 , section 1.2
  97. ^ Wilde, Ivan Francis (2006), Lecture notes on complex analysis, London: Imperial College Press, ISBN 978-1-86094-642-4 , theorem 6.1.
  98. ^ Higham, Nicholas (2008), Functions of Matrices. Theory and Computation, Philadelphia, PA: SIAM, ISBN 978-0-89871-646-7 , chapter 11.
  99. ^ Neukirch, Jürgen (1999), Algebraische Zahlentheorie, Grundlehren der mathematischen Wissenschaften, 322, Berlin: Springer-Verlag, ISBN 978-3-540-65399-8, MR 1697859, Zbl 0956.11021 , section II.5.
  100. ^ Hancock, Edwin R.; Martin, Ralph R.; Sabin, Malcolm A. (2009), Mathematics of Surfaces XIII: 13th IMA International Conference York, UK, September 7–9, 2009 Proceedings, Springer, hlm. 379, ISBN 978-3-642-03595-1 
  101. ^ Stinson, Douglas Robert (2006), Cryptography: Theory and Practice (edisi ke-3rd), London: CRC Press, ISBN 978-1-58488-508-5 
  102. ^ Lidl, Rudolf; Niederreiter, Harald (1997), Finite fieldsPerlu mendaftar (gratis), Cambridge University Press, ISBN 978-0-521-39231-0 
  103. ^ Corless, R.; Gonnet, G.; Hare, D.; Jeffrey, D.; Knuth, Donald (1996), "On the Lambert W function" (PDF), Advances in Computational Mathematics, 5: 329–59, doi:10.1007/BF02124750, ISSN 1019-7168, diarsipkan dari versi asli (PDF) tanggal 14 December 2010, diakses tanggal 13 February 2011 
  104. ^ Cherkassky, Vladimir; Cherkassky, Vladimir S.; Mulier, Filip (2007), Learning from data: concepts, theory, and methods, Wiley series on adaptive and learning systems for signal processing, communications, and control, New York: John Wiley & Sons, ISBN 978-0-471-68182-3 , p. 357
  105. ^ Bourbaki, Nicolas (1998), General topology. Chapters 5–10, Elements of Mathematics, Berlin, New York: Springer-Verlag, ISBN 978-3-540-64563-4, MR 1726872 , section V.4.1
  106. ^ Ambartzumian, R.V. (1990), Factorization calculus and geometric probabilityPerlu mendaftar (gratis), Cambridge University Press, ISBN 978-0-521-34535-4 , section 1.4
  107. ^ Esnault, Hélène; Viehweg, Eckart (1992), Lectures on vanishing theorems, DMV Seminar, 20, Basel, Boston: Birkhäuser Verlag, CiteSeerX 10.1.1.178.3227alt=Dapat diakses gratis, doi:10.1007/978-3-0348-8600-0, ISBN 978-3-7643-2822-1, MR 1193913 , section 2
  108. ^ Apostol, T.M. (2010), "Klasüo/bak pasir", dalam Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W., NIST Handbook of Mathematical Functions, Cambridge University Press, ISBN 978-0-521-19225-5, MR 2723248 

Templat:Hyperoperations Templat:Artikel pilihan hanya untuk Wikipedia:Artikel pilihan.