Lompat ke isi

Computus

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Revisi sejak 11 Maret 2022 23.00 oleh Taylorbot (bicara | kontrib) (per BPA : sintaks <br> dan <code> | t=1'513 su=213 in=220 at=213 -- only 145 edits left of totally 359 possible edits | edr=000-0001(!!!) ovr=010-1111 aft=000-0001)
Tabel dari Swedia untuk menghitung tanggal Paskah untuk periode 1140-1671 menurut kalender Julian.

Computus (Latin untuk "komputasi" atau "penghitungan") adalah perhitungan tanggal Paskah pada kalender gereja Kristen. Nama prosedur ini telah dipakai sejak Abad Pertengahan di Eropa dan merupakan salah satu cara penghitungan kalender terpenting.

Rumus utamanya adalah bahwa hari Paskah jatuh pada hari Minggu pertama setelah hari keempat belas pada bulan kamariyah (purnama pertama) yang jatuh pada atau setelah 21 Maret (yaitu tanggal titik Musim Semi Matahari gerejawi). Untuk memperhitungkan tanggal perayaan Paskah, gereja Kristen menggunakan hari bulan purnama "gerejawi", bukan bulan purnama "astronomi". Gereja Ortodoks Timur menggunakan tanggal 21 Maret menurut Kalender Julian, sedangkan Gereja Katolik Roma menggunakan tanggal 21 Maret menurut Kalender Gregorian yang lebih modern dan lebih luas pemakaiannya. Dengan demikian bulan purnama gereja timur biasanya jatuh 4-5 hari setelah bulan purnama gereja barat.

Sejarah

Teori


Metode menggunakan tabel

Kalender Gregorius

Metode ini mulai digunakan setelah reformasi kalender Gregorian tahun 1582.[1] Cara kerjanya diuraikan oleh Clavius dalam buku "Six Canons" (1582), dan penjelasan lengkapnya pada bukunya "Explicatio" (1603).

Minggu Paskah adalah hari Minggu setelah tanggal Purnama Paskah. Tanggal Purnama Paskah (TPP) adalah bulan purnama gerejawi setelah tanggal 20 Maret dan tanggalnya dapat dilihat di tabel berikut:

Tanggal Purnama Paskah (TPP) selama 300 tahun: 1900-2199 M (M=Maret A=April)

Modulus tahun dibagi 19 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Tanggal Purnama Paskah 14A 3A 23M 11A 31M 18A 8A 28M 16A 5A 25M 13A 2A 22M 10A 30M 17A 7A 27M

Misalnya: 2010 M dibagi 19 sisanya 15. TPP adalah 30 Maret 2010, hari Selasa. Minggu Paskah adalah hari Minggu berikutnya, yaitu tanggal 4 April.

Kalender Gregorian membuang tiga hari kabisat dalam siklus 400 tahun (selalu pada tahun abad). Ini adalah cara kalender tersebut untuk mengkoreksi perhitungannya sesuai dengan panjang tahun surya.

Epact


UU Kalender Britania dan Buku Doa Bersama


Kalender Julius

Metode penghitungan tanggal purnama gerejawi merupakan standar perhitungan kalender sebelum reformasi kalender Gregorian, dan metode lawas tersebut masih digunakan oleh kebanyakan gereja Ortodoks. Karena tidak ada koreksi seperti pada penanggalan Gregorian, purnama gerejawi kalender Julian setiap abad bergeser lebih dari 3 hari terhadap purnama astronomi, akibatnya gereja Ortodoks Timur merayakan Paskah sekitar seminggu setelah gereja Katolik dan Kristen. Seringkali Paskah Ortodoks dirayakan 4-5 minggu lebih lambat karena tanggal 20 Maret kalender Julian 13 hari lebih lambat dibanding 20 Maret kalender Gregorian pada periode 1900-2099.

Berikut tabel tanggal Purnama Paskah untuk semua tahun Julian sejak 326 M:[2] (M=Maret, A=April)

Angka Emas 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Tanggal Purnama Paskah 5A 25M 13A 2A 22M 10A 30M 18A 7A 27M 15A 4A 24M 12A 1A 21M 9A 29M 17A

Hari Paskah adalah hari Minggu pertama setelah tanggal yang tertera. Jadi untuk setiap purnama gerejawi, ada tujuh kemungkinan tanggal Paskah. Siklus ketujuh hari tersebut tidak berulang, karena adanya tahun kabisat setiap 4 tahun, siklus tersebut berulang setiap 4x7=28 tahun, yang disebut dengan siklus syamsiah. Dengan demikian siklus tanggal Paskah berulang setiap 28x19=532 tahun. Siklus Paskah ini juga disebut dengan Siklus Viktorius menurut Viktorius dari Aquitaine yang memperkenalkannya ke Roma pada 457. Pertama kali diketahui digunakan oleh Annianus dari Aleksandria pada awal abad ke-5. Terkadang siklus tersebut disebut pula dengan siklus Dionysius menurut Dionysius Exiguus yang membuat tabel-tabel Paskah yang dimulai tahun 532; namun rupanya dia tidak menyadari bahwa computus Aleksandria yang dijabarkannya memiliki siklus 532 tahun, walaupun ia menyadari bahwa tabel 95 tahunan bukanlah siklus sejatinya. Venerabilis Bede (abad ke-7) rupanya yang pertama kali mengamati siklus syamsiah dan menjelaskan hubungan siklus Syamsiah dan siklus Paskah.

Angka-angka pada siklus 19 tahunan disebut Angka Emas. Istilah ini pertama kali digunakan di puisi komputasi Massa Compoti oleh Alexander de Villa Dei pada 1200. Penyalin berikutnya menyebutkan bahwa tabel tersebut aslinya ditulis oleh Abbo dari Fleury pada 988.

Di Eropa pada Abad pertengahan, tanggal Paskah dapat diingat dengan menghafalkan puisi dalam bahasa Latin:[3]

Nonae Aprilis norunt quinos
octonae kalendae assim depromunt.
Idus Aprilis etiam sexis,
nonae quaternae namque dipondio.
Item undene ambiunt quinos,
quatuor idus capiunt ternos.
Ternas kalendas titulant seni,
quatuor dene cubant in quadris.
Septenas idus septem eligunt,
senae kalendae sortiunt ternos,
denis septenis donant assim.
Pridie nonas porro quaternis,
nonae kalendae notantur septenis.
Pridie idus panditur quinis,
kalendas Aprilis exprimunt unus.
Duodene namque docte quaternis,
speciem quintam speramus duobus.
Quaternae kalendae quinque coniciunt,
quindene constant tribus adeptis.

Dua kata pertama pada setiap baris merupakan tanggal Purnama Paskah dalam siklus 19 tahunan. Dua kata berukutnya merupakan selisih hari Purnama Paskah dari nama hari Maret 24 tahun itu.

Algoritme

Catatan perhitungan
Dalam menghitung tanggal Paskah tanpa menggunakan tabel, yang biasa dilakukan adalah hanya menggunakan operasi aritmetika penjumlahan, pengurangan, perkalian, pembagian, modulus, dan penyimpanan (plus minus kali bagi mod assign). Operasi-operasi itu terdapat pada kalkulator elektronik atau mekanik sederhana, namun membatasi operasi yang sebenarnya dapat dikerjakan oleh komputer melalui operasi conditional dan statement. Contohnya untuk mengkonversi Hari-pada-Maret (22 hingga 56) menjadi tanggal bulan (22 Maret - 25 April) dapat dilakukan dengan operasi if-else sederhana:
(if DoM>31) {Day=DoM-31, Month=Apr} else {Day=DoM, Month=Mar}. Penggunaan operasi conditional tersebut merupakan intisari dari perhitungan Gregorian.

Algoritme Gauss

Matematikawan Carl Friedrich Gauss menunjukkan algoritme penghitungan tanggal Paskah Gregorian maupun Julian pada 1800[4][5] yang ia revisi pada 1816.[6]

Kalimat matematika tahun = 1777 tahun = 2024
a = tahun mod 19 a = 10 a = 10
b = tahun mod 4 b = 1 b = 0
c = tahun mod 7 c = 6 c = 1
k = pembulatan ke bawah (tahun/100) k = 17 k = 20
p = pembulatan ke bawah ((13 + 8k)/25) p = 5 p = 6
q = pembulatan ke bawah (k/4) q = 4 q = 5
M = (15 − p + kq) mod 30 M = 23 M = 24
N = (4 + kq) mod 7 N = 3 N = 5
d = (19a + M) mod 30 d = 3 d = 4
e = (2b + 4c + 6d + N) mod 7 e = 5 e = 5
jika d = 29 dan e = 6, ganti 26 April dengan 19 April
jika d = 28, e = 6, dan (11M + 11) mod 30 < 19, ganti 25 April dengan 18 April
Jika tidak, maka Paskah Gregorian adalah 22 + d + e Maret atau d + e − 9 April
Hasil 30 Maret

31 Maret

  • Paskah Julian adalah M = 15 dan N = 6 (k, p, dan q tidak diperlukan)

Algoritme Gregorius anonim

Seorang "koresponden New York" mengirimkan algoritme ini di jurnal Nature pada 1876.[7][8] Algoritme tersebut telah dicetak ulang berulang kali, pada 1877 oleh Samuel Butcher di The Ecclesiastical Calendar,[9]:225 pada 1922 oleh H. Spencer Jones di General Astronomy,[10] pada 1977 oleh Journal of the British Astronomical Association,[11] pada 1977 oleh The Old Farmer's Almanac, pada 1988 oleh Peter Duffett-Smith di Practical Astronomy With Your Calculator, dan pada 1991 oleh Jean Meeus di Astronomical Algorithms.[12]

Paskah menurut sistem Gregorian telah digunakan sejak 1583 oleh Gereja Katolik Roma dan dipakai oleh gereja Protestan kebanyakan. Gereja Protestan Jerman menggunakan perhitungan Paskah astronomis berdasarkan Tabel Rudolphinenya Johannes Kepler antara 1700 hingga 1774, sementara Swedia menggunakannya mulai 1739-1844. Paskah astronimis ini jatuh satu minggu sebelum Paskah Gregorian pada 1724, 1744, 1778, 1798, dll.[9][13]:153

Ekspresi Y = 1961 Y = 2024
a = Y mod 19 a = 4 a = 10
b = Y div 100 b = 19 b = 20
c = Y mod 100 c = 61 c = 24
d = b div 4 d = 4 d = 5
e = b mod 4 e = 3 e = 0
f = (b + 8) div 25 f = 1 f = 1
g = (bf + 1) div 3 g = 6 g = 6
h = (19a + bdg + 15) mod 30 h = 10 h = 4
i = c div 4 i = 15 i = 6
k = c mod 4 k = 1 k = 0
l = (32 + 2e + 2ihk) mod 7 l = 1 l = 5
m = (a + 11h + 22l) div 451 m = 0 m = 0
bulan = (h + l − 7m + 114) div 31 bulan = 4 (April) bulan = 3 (Maret)
tanggal = ((h + l − 7m + 114) mod 31) + 1 tanggal = 2 tanggal = 31
Paskah kalender Gregorian 2 April 1961 31 Maret 2024

Algoritme Julius Meeus

Jean Meeus, dalam bukunya Astronomical Algorithms (1991, h. 69), mengajukan algoritme berikut untuk menghitung Paskah menurut sistem Julian. Sebelum tahun 800, metode-metode yang lain telah ada. Seluruh gereja menggunakan tanggal 21 Maret sebagai titik Musim Semi Matahari; gereja ritus Barat menggunakan kalender Gregorian dan gereja ritus Timur menggunakan kalender Julian. Untuk menghitung tanggal Paskah Ortodoks menurut kalender Gregorian, perlu ditambahkan 13 hari untuk Paskah antara tahun 1900-2099 (termasuk keduanya). Dengan demikian titik Musim Semi Matahari gereja ritus Timur adalah 3 April menurut penanggalan Gregorian (untuk periode 1900-2099) dan Paskah Julian bisa jatuh antara 4 April-8 Mei.

Kalimat matematika Y = 2008 Y = 2009 Y = 2010
a = Y mod 4 a = 0 a = 1 a = 2
b = Y mod 7 b = 6 b = 0 b = 1
c = Y mod 19 c = 13 c = 14 c = 15
d = (19c + 15) mod 30 d = 22 d = 11 d = 0
e = (2a + 4bd + 34) mod 7 e = 1 e = 4 e = 0
bulan = ke bawah ((d + e + 114) / 31) 4 (April) 4 (April) 3 (Maret)
tanggal = ((d + e + 114) mod 31) + 1 14 6 22
Hari Paskah (kalender Julian) 14 April 2008 6 April 2009 22 Maret 2010
Hari Paskah (kalender Gregorian) 27 April 2008 19 April 2009 4 April 2010

Lihat pula

Referensi

  1. ^ See especially the first, second, fourth, and sixth canon, and the calendarium
  2. ^ Karena detail perhitungan membutuhkan tujuh abad hingga dicapai suatu kesepakatan, maka catatan sejarah abad ke-4 dan 5 kadang-kadang menunjukkan tanggal yang berbeda dengan tanggal di tabel.
  3. ^ Peter S. Baker and Michael Lapidge, eds., Byrhtferth's Enchiridion, Oxford University Press, 1995, pp. 136-7, 320-322.
  4. ^ (Jerman) Gauss' original 1800 Easter article (Jerman)
  5. ^ "Gauss' 1800 Easter article in his Works". Diarsipkan dari versi asli tanggal 2012-07-09. Diakses tanggal 2009-03-27. 
  6. ^ (Jerman) Gauss' 1816 Easter correction Diarsipkan 2012-07-12 di Archive.is
  7. ^ Reinhold Bien, "Gauß and Beyond: The Making of Easter Algorithms[pranala nonaktif permanen]" Archive for History of Exact Sciences 58/5 (July 2004) 439−452
  8. ^ "A New York correspondent", "To find Easter", Nature (April 20, 1876) 487.
  9. ^ a b Samuel Butcher, The Ecclesiastical calendar: its theory and construction (Dublin, 1877)
  10. ^ H. Spencer Jones, General Astronomy (London: Longsman, Green, 1922) 73.
  11. ^ Journal of the British Astronomical Association 88 (December, 1977) 91.
  12. ^ Jean Meeus, Astronomical Algorithms (Richmond, Virginia: Willmann-Bell, 1991) 67–68.
  13. ^ Roscoe Lamont, "The reform of the Julian calendar", Popular astronomy 28 (1920) 18-31.

Buku

  • Blackburn, Bonnie, and Holford-Strevens, Leofranc. (2003). The Oxford Companion to the Year: An exploration of calendar customs and time-reckoning. (First published 1999, reprinted with corrections 2003.) Oxford: Oxford University Press.
  • Borst, Arno (1993). The Ordering of Time: From the Ancient Computus to the Modern Computer Trans. by Andrew Winnard. Cambridge: Polity Press; Chicago: Univ. of Chicago Press.
  • Clavius, Christopher (1603): Romani calendarij à Gregorio XIII. P. M. restituti explicatio. In the fifth volume of Opera Mathematica (1612). This [1] includes page images of the Six Canons and the Explicatio
  • Constantine the Great, Emperor (325): Letter to the bishops who did not attend the first Nicaean Council; from Eusebius' Vita Constantini. English translations: [2] [3]
  • Coyne, G. V., M. A. Hoskin, M. A., and Pedersen, O. (ed.) Gregorian reform of the calendar: Proceedings of the Vatican conference to commemorate its 400th anniversary, 1582-1982, (Vatican City: Pontifical Academy of Sciences, Specolo Vaticano, 1983).
  • Dyonisius Exiguus (525): Liber de Paschate. On-line: (full Latin text) and (table with Argumenta in Latin, with English translation) Diarsipkan 2006-01-09 di Wayback Machine.
  • Eusebius of Caesarea, The History of the Church, Translated by G. A. Williamson. Revised and edited with a new introduction by Andrew Louth. Penguin Books, London, 1989.
  • Gibson, Margaret Dunlop, The Didascalia Apostolorum in Syriac, Cambridge University Press, London, 1903.
  • Gregory XIII (Pope) and the calendar reform committee (1581): the Papal Bull Inter Gravissimas and the Six Canons. On-line under: "Les textes fondateurs du calendrier grégorien", with some parts of Clavius's Explicatio
  • Schwartz, E., Christliche und jüdische Ostertafeln, (Abhandlungen der königlichen Gesellschaft der Wissenschaften zu Göttingen. Pilologisch-historische Klasse. Neue Folge, Band viii.) Weidmannsche Buchhandlung, Berlin, 1905.
  • Stern, Sacha, Calendar and Community: A History of the Jewish Calendar Second Century BCE - Tenth Century CE, Oxford University Press, Oxford, 2001.
  • Wallis, Faith., Bede: The Reckoning of Time, (Liverpool: Liverpool Univ. Pr., 1999), pp. lix-lxiii.
  • Weisstein, Eric. (c. 2006) "Paschal Full Moon" in World of Astronomy. [4]

Pranala luar