Lompat ke isi

Logam berat: Perbedaan antara revisi

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Konten dihapus Konten ditambahkan
Pierrewee (bicara | kontrib)
Rescuing 31 sources and tagging 0 as dead.) #IABot (v2.0.9.3
Tag: menambah URL dengan parameter pelacak IABotManagementConsole [1.2]
 
(27 revisi perantara oleh 13 pengguna tidak ditampilkan)
Baris 6: Baris 6:
}}
}}


'''Logam berat''' umumnya didefinisikan sebagai [[logam]] dengan [[densitas]], [[berat atom]], atau [[nomor atom]] tinggi. Kriteria yang digunakan, dan jika [[metaloid]] disertakan, bervariasi tergantung pada penulis dan konteksnya. Dalam [[metalurgi]], misalnya, logam berat dapat didefinisikan berdasarkan kerapatan, sedangkan pada fisika, kriteria pembeda adalah nomor atom, sementara kimiawan kemungkinan akan lebih memperhatikan [[sifat kimia|perilaku kimia]]. Definisi yang lebih spesifik telah dipublikasikan, namun tidak satu pun yang diterima secara luas. Definisi yang disurvei dalam artikel ini mencakup 96 dari 118 [[unsur kimia]] yang diketahui; hanya [[raksa]], [[timbal]] dan [[bismut]] yang memenuhi semua kriteria. Terlepas dari kurang kesepakatnya ini, istilah tersebut (jamak atau tunggal) banyak digunakan dalam sains. Densitas lebih dari 5 g/cm{{sup|3}} kadang-kadang dikutip sebagai kriteria yang umum digunakan dalam batang tubuh artikel ini.
'''Logam berat''' umumnya didefinisikan sebagai [[logam]] dengan [[densitas]], [[berat atom]], atau [[nomor atom]] tinggi. Kriteria yang digunakan, dan jika [[metaloid]] disertakan, bervariasi tergantung pada penulis dan konteksnya. Dalam [[metalurgi]], misalnya, logam berat dapat didefinisikan berdasarkan kerapatan, sedangkan pada fisika, kriteria pembeda adalah nomor atom, sementara kimiawan kemungkinan akan lebih memperhatikan [[sifat kimia]] zatnya. Definisi yang lebih spesifik telah dipublikasikan, namun tidak satu pun yang diterima secara luas. Definisi yang disurvei dalam artikel ini mencakup 96 dari 118 [[unsur kimia]] yang diketahui; hanya [[raksa]], [[timbal]] dan [[bismut]] yang memenuhi semua kriteria. Terlepas dari kurang kesepakatnya ini, istilah tersebut (jamak atau tunggal) banyak digunakan dalam sains. Densitas lebih dari 5 g/cm{{sup|3}} kadang-kadang dikutip sebagai kriteria yang umum digunakan dalam batang tubuh artikel ini.


Logam yang paling awal dikenal—logam biasa seperti [[besi]], [[tembaga]], dan [[timah]], dan logam mulia seperti [[perak]], [[emas]], dan [[platina]]—adalah logam berat. Sejak tahun 1809 dan seterusnya, ditemukan [[logam ringan]], seperti [[magnesium]], [[aluminium]], dan [[titanium]], dan juga logam berat yang kurang terkenal termasuk [[galium]], [[talium]], dan [[hafnium]].
Logam yang paling awal dikenal—logam biasa seperti [[besi]], [[tembaga]], dan [[timah]], dan logam mulia seperti [[perak]], [[emas]], dan [[platina]]—adalah logam berat. Sejak tahun 1809 dan seterusnya, ditemukan [[logam ringan]], seperti [[magnesium]], [[aluminium]], dan [[titanium]], dan juga logam berat yang kurang terkenal termasuk [[galium]], [[talium]], dan [[hafnium]].


Beberapa logam berat ada yang merupakan nutrisi esensial (biasanya besi, [[kobalt]], dan [[seng]]), atau relatif tidak berbahaya (seperti [[ruthenium]], perak, dan [[indium]]), tetapi dapat beracun dalam jumlah besar atau dalam bentuk tertentu. Logam berat lainnya, seperti [[kadmium]], raksa, dan timbal, sangat beracun. Sumber potensi keracunan logam berat antara lain [[penambangan]] dan [[limbah industri]], [[limpasan pertanian]], [[bahaya kimia|paparan kerja]], dan [[Dampak lingkungan cat|cat]] serta [[pengawetan kayu]].
Beberapa logam berat ada yang merupakan nutrisi esensial (biasanya besi, [[kobalt]], dan [[seng]]), atau relatif tidak berbahaya (seperti [[ruthenium]], perak, dan [[indium]]), tetapi dapat beracun dalam jumlah besar atau dalam bentuk tertentu. Logam berat lainnya, seperti [[kadmium]], raksa, dan timbal, sangat beracun. Sumber potensi keracunan logam berat antara lain [[tailing|limbah penambangan]] [[limbah industri|dan industri]], [[limpasan pertanian]], [[bahaya kimia|paparan kerja]], dan [[Dampak lingkungan cat|cat]] serta [[pengawetan kayu]].


Karakterisasi fisika dan kimia logam berat harus dilakukan dengan hati-hati, karena logam yang terlibat tidak selalu didefinisikan dengan baik. Selain relatif padat, logam berat cenderung kurang [[reaksi kimia|reaktif]] daripada logam yang lebih ringan dan memiliki [[sulfida]] dan [[hidroksida]] [[kelarutan|terlarut]] yang jauh lebih sedikit. Meskipun relatif mudah untuk mengenali logam berat seperti tungsten dari logam yang lebih ringan seperti [[natrium]], beberapa logam berat seperti seng, raksa, dan timbal memiliki karakteristik logam yang lebih ringan, sebaliknya logam yang lebih ringan seperti [[berilium]], [[skandium]], dan titanium memiliki beberapa karakteristik logam berat.
Karakterisasi fisika dan kimia logam berat harus dilakukan dengan hati-hati, karena logam yang terlibat tidak selalu didefinisikan dengan baik. Selain relatif padat, logam berat cenderung kurang [[reaksi kimia|reaktif]] daripada logam yang lebih ringan dan memiliki [[sulfida]] dan [[hidroksida]] [[kelarutan|terlarut]] yang jauh lebih sedikit. Meskipun relatif mudah untuk mengenali logam berat seperti tungsten dari logam yang lebih ringan seperti [[natrium]], beberapa logam berat seperti seng, raksa, dan timbal memiliki karakteristik logam yang lebih ringan, sebaliknya logam yang lebih ringan seperti [[berilium]], [[skandium]], dan titanium memiliki beberapa karakteristik logam berat.


Logam berat relatif langka di [[kerak bumi]] tetapi hadir dalam banyak aspek kehidupan modern. Mereka digunakan dalam, misalnya, [[tongkat golf]], [[mobil]], [[antiseptik]], oven yang dapat membersihkan sendiri, [[plastik]], [[panel surya]], [[telepon genggam]], dan [[pemercepat partikel]].
Logam berat relatif langka di [[kerak bumi]] tetapi hadir dalam banyak aspek kehidupan modern. Mereka digunakan pada [[tongkat golf]], [[mobil]], [[antiseptik]], oven yang dapat membersihkan sendiri, [[plastik]], [[panel surya]], [[telepon genggam]], dan [[pemercepat partikel]].


== Definisi ==
== Definisi ==
Baris 207: Baris 207:
|}
|}
|-
|-
| colspan=20 style="font-size:90%; padding-right:10px; padding-left:10px; text-align:left"|Tabel ini menunjukkan jumlah kriteria logam berat yang cocok untuk masing-masing logam, dari sepuluh kriteria yang tercantum dalam bagian ini yaitu dua berdasarkan [[densitas|kepadatan]], tiga pada [[berat atom]], dua pada [[nomor atom]], dan tiga pada perilaku kimia.{{#tag:ref|Kriteria yang digunakan adalah ''densitas:''<ref name="Duffus798" /> (1) di atas 3,5&nbsp;g/cm<sup>3</sup>; (2) di atas 7&nbsp;g/cm<sup>3</sup>; ''berat atom:'' (3) > 22,98;<ref name="Duffus798" /> (4) > 40 (kecuali logam [[blok-s]] dan [[blok-f|-f]]);<ref name="Rand" /> (5) > 200;<ref name="Baldwin" /> ''nomor atom:'' (6) > 20; (7) 21–92;<ref name="Lyman" /> ''perilaku kimia:'' (8) United States Pharmacopeia;<ref name="USP" /><ref name="Raghuram" /><ref name="Thorne" /> (9) Definisi berdasarkan tabel periodik Hawkes (tidak termasuk [[lantanida]] dan [[aktinida]]);<ref name="Hawkes" /> dan (10) Klasifikasi biokimia Nieboer and Richardson.<ref name="Nieboer 1980 4">{{harvnb|Nieboer|Richardson|1980|p=4}}</ref>Densitas unsur terutama dirujuk dari Emsley.<ref name="Emsley">{{harvnb|Emsley|2011}}</ref> Digunakan prediksi densitas untuk [[astatin|At]], [[fransium|Fr]] dan [[fermium|Fm]]–[[tennessine|Ts]].<ref name="HoffBon">{{harvnb|Hoffman|Lee|Pershina|2011|pp=1691,1723}}; {{harvnb|Bonchev|Kamenska|1981|p=1182}}</ref> Densitas indikatif diturunkan untuk [[fermium|Fm]], [[mendelevium|Md]], [[nobelium|No]] dan [[lawrencium|Lr]] berdasarkan berat atom mereka, estimasi [[jari-jari logam]],<ref>{{harvnb|Silva|2010|pp=1628, 1635, 1639, 1644}}</ref> dan prediksi struktur kristal.<ref>{{harvnb|Fournier|1976|p=243}}</ref> Berat atom dirujuk dari Emsley.,<ref name="Emsley"/> dalam penutup belakang| group=n}} Ini mengilustrasikan kurangnya kesepakatan yang menyelimuti konsep, dengan kemungkinan perkecualian [[raksa]], [[timbal]] dan [[bismut]].<br/>
| colspan=20 style="font-size:90%; padding-right:10px; padding-left:10px; text-align:left"|Tabel ini menunjukkan jumlah kriteria logam berat yang cocok untuk masing-masing logam, dari sepuluh kriteria yang tercantum dalam bagian ini yaitu dua berdasarkan [[densitas|kepadatan]], tiga pada [[berat atom]], dua pada [[nomor atom]], dan tiga pada perilaku kimia.{{#tag:ref|Kriteria yang digunakan adalah ''densitas:''<ref name="Duffus798" /> (1) di atas 3,5&nbsp;g/cm<sup>3</sup>; (2) di atas 7&nbsp;g/cm<sup>3</sup>; ''berat atom:'' (3) > 22,98;<ref name="Duffus798" /> (4) > 40 (kecuali logam [[blok-s]] dan [[blok-f|-f]]);<ref name="Rand" /> (5) > 200;<ref name="Baldwin" /> ''nomor atom:'' (6) > 20; (7) 21–92;<ref name="Lyman" /> ''perilaku kimia:'' (8) United States Pharmacopeia;<ref name="USP" /><ref name="Raghuram" /><ref name="Thorne" /> (9) Definisi berdasarkan tabel periodik Hawkes (tidak termasuk [[lantanida]] dan [[aktinida]]);<ref name="Hawkes" /> dan (10) Klasifikasi biokimia Nieboer and Richardson.<ref name="Nieboer 1980 4">{{harvnb|Nieboer|Richardson|1980|p=4}}</ref> Densitas unsur terutama dirujuk dari Emsley.<ref name="Emsley">{{harvnb|Emsley|2011}}</ref> Digunakan prediksi densitas untuk [[astatin|At]], [[fransium|Fr]] dan [[fermium|Fm]]–[[tennessine|Ts]].<ref name="HoffBon">{{harvnb|Hoffman|Lee|Pershina|2011|pp=1691,1723}}; {{harvnb|Bonchev|Kamenska|1981|p=1182}}</ref> Densitas indikatif diturunkan untuk [[fermium|Fm]], [[mendelevium|Md]], [[nobelium|No]] dan [[lawrencium|Lr]] berdasarkan berat atom mereka, estimasi [[jari-jari logam]],<ref>{{harvnb|Silva|2010|pp=1628, 1635, 1639, 1644}}</ref> dan prediksi struktur kristal.<ref>{{harvnb|Fournier|1976|p=243}}</ref> Berat atom dirujuk dari Emsley.,<ref name="Emsley"/> dalam penutup belakang| group=n}} Ini mengilustrasikan kurangnya kesepakatan yang menyelimuti konsep, dengan kemungkinan perkecualian [[raksa]], [[timbal]] dan [[bismut]].<br/>
Enam unsur di penghujung [[periode tabel periodik|periode]] (baris) 4 sampai 7 kadang-kadang dianggap metaloid dan diperlakukan di sini sebagai logam, termasuk di antaranya adalah [[germanium]] (Ge), [[arsenik]] (As), [[selenium]] (Se), [[antimon]] (Sb), [[telurium]] (Te), dan [[astatin]] (At).<ref name="Vernon" />{{#tag:ref|Namun, metaloid dikeluarkan dari definisi berdasarkan tabel periodik Hawkes, dan ia memberi catatan "tidak perlu untuk menentukan apakah semilogam (yaitu metaloid) harus dimasukkan sebagai logam berat."<ref name="Hawkes" />|group=n}} [[Oganesson]] (Og) diperlakukan sebagai nonlogam.
Enam unsur di penghujung [[periode tabel periodik|periode]] (baris) 4 sampai 7 kadang-kadang dianggap metaloid dan diperlakukan di sini sebagai logam, termasuk di antaranya adalah [[germanium]] (Ge), [[arsenik]] (As), [[selenium]] (Se), [[antimon]] (Sb), [[telurium]] (Te), dan [[astatin]] (At).<ref name="Vernon" />{{#tag:ref|Namun, metaloid dikeluarkan dari definisi berdasarkan tabel periodik Hawkes, dan ia memberi catatan "tidak perlu untuk menentukan apakah semilogam (yaitu metaloid) harus dimasukkan sebagai logam berat."<ref name="Hawkes" />|group=n}} [[Oganesson]] (Og) diperlakukan sebagai nonlogam.


Baris 221: Baris 221:
{{quote box|width=20%|align=left|bgcolor=cornsilk|quote="logam yang membentuk sulfida dan [[hidroksida]] tak larut, yang [[garam (kimia)|garamnya]] menghasilkan larutan berwarna dalam air, dan yang [[kompleks koordinasi|senyawa kompleksnya]] biasanya berwarna"|Stephen Hawkes|}}
{{quote box|width=20%|align=left|bgcolor=cornsilk|quote="logam yang membentuk sulfida dan [[hidroksida]] tak larut, yang [[garam (kimia)|garamnya]] menghasilkan larutan berwarna dalam air, dan yang [[kompleks koordinasi|senyawa kompleksnya]] biasanya berwarna"|Stephen Hawkes|}}


Berdasarkan logam yang dirujuknya sebagai logam berat, ia menyarankan lebih bermanfaat untuk mendefinisikan mereka sebagai (secara umum) seluruh logam dalam tabel periodik kolom [[unsur golongan 3|ke-3]] hingga [[kalkogen|16]] yang berada pada [[unsur periode 4|baris 4]] dan seterusnya, dengan kata lain, [[logam transisi]] dan [[logam pasca transisi]] adalah logam berat.<ref name="Hawkes">{{harvnb|Hawkes|1997}}</ref>{{#tag:ref|Logam transisi dan pasca transisi yang tidak selalu membentuk kompleks berwarna adalah [[skandium|Sc]] dan [[yttrium|Y]] di [[unsur golongan 3|golongan 3]];<ref name=longo>{{harvnb|Longo|1974|p=683}}</ref> [[perak|Ag]] di [[Unsur golongan 11|golongan 11]];<ref>{{harvnb|Tomasik|Ratajewicz|1985|p=433}}</ref> [[seng|Zn]] dan [[kadmium|Cd]] di golongan 12;<ref name=longo /><ref name=Herron>{{harvnb|Herron|2000|p=511}}</ref> dan logam-logam golongan [[unsur golongan 13|13]]–[[unsur golongan 16|16]].<ref name=Nathans>{{harvnb|Nathans|1963|p=265}}</ref>|group=n}} [[Lantanida]] dapat memenuhi penjelasan tiga bagian Hawkes; tetapi status [[aktinida]] tidak sepenuhnya mapan;{{#tag:ref|Sulfida dan hidroksida lantanida (Ln) tidak larut;<ref>{{harvnb|Topp|1965|p=106}}: {{harvnb|Schweitzer|Pesterfield|2010|p=284}}</ref> yang terakhir dapat diperoleh dari larutan akuatik garam Ln sebagai endapan gelatin berwarna;<ref>{{harvnb|King|1995|p=297}}; {{harvnb|Mellor|1924|p=628}}</ref> dan kompleks Ln memiliki warna yang sama dengan ion akuanya (yang mayoritas berwarna).<ref>{{harvnb|Cotton|2006|pp=66}}</ref> Sulfida aktinida (An) mungkin larut atau tidak larut, tergantung penulisnya. [[Uranium monosulfida]] divalen tidak diserang oleh air mendidih.<ref>{{harvnb|Albutt|Dell|1963|p=1796}}</ref> Ion aktinida trivalen berperilaku mirip dengan ion lantanida trivalen, sehingga sulfidanya masih mungkin tidak larut tetapi hal ini tidak dinyatakan secara jelas.<ref>{{harvnb|Wiberg|2001|pp=1722–1723}}</ref> Sulfida An tetravalen terdekomposisi,<ref>{{harvnb|Wiberg|2001|p=1724}}</ref> tetapi Edelstein et al. menyatakan bahwa mereka dapat larut;<ref name=Edelstein>{{harvnb|Edelstein et al.|2010|p=1796}}</ref> sementara Haynes menyatakan [[thorium(IV) sulfida]] tidak larut.<ref>{{harvnb|Haynes|2015|pp=4–95}}</ref> Di awal sejarah fisi nuklir, telah dinyatakan bahwa pengendapan dengan [[hidrogen sulfida]] adalah cara yang "luar biasa" efektif untuk mengisolasi dan mendeteksi [[unsur transuranium]] dalam larutan.<ref>{{harvnb|Weart|1983|p=94}}</ref> Dengan nada yang sama, Deschlag menulis bahwa unsur-unsur setelah uranium diperkirakan mempunyai sulfida tak larut yang analog dengan logam transisi baris ketiga. Tetapi, ia melanjutkan bahwa unsur setelah [[aktinium]] ditemukan memiliki sifat yang berbeda dari logam transisi dan menyatakan mereka tidak membentuk sulfida tak larut.<ref>{{harvnb|Deschlag|2011|p=226}}</ref> Namun, hidroksida An tidak larut<ref name=Edelstein /> dan dapat diendapkan dari larutan akuatik garamnya.<ref name="Wulfsberg">{{harvnb|Wulfsberg|2000|pp=209–211}}</ref> Akhirnya, banyak kompleks An memiliki warna "dalam dan cerah".<ref>{{harvnb|Ahrland|Liljenzin|Rydberg|1973|p=478}}</ref>|group=n}}{{#tag:ref|Unsur yang lebih berat yang dikenal sebagai [[metaloid]]—[[germanium|Ge]]; [[arsenik|As]], [[antimon|Sb]]; [[selenium|Se]], [[telurium|Te]], [[polonium|Po]]; [[astatin|At]]—memenuhi beberapa dari tiga definisi Hawkes. Seluruhnya memiliki sulfida tak larut<ref name="Wulfsberg" /><ref name="Korenman">{{harvnb|Korenman|1959|p=1368}}</ref> tetapi hanya Ge, Te, dan Po yang nampaknya memiliki hidroksida tak larut yang efektif.<ref>{{harvnb|Yang|Jolly|O'Keefe|1977|p=2980}}; {{harvnb|Wiberg|2001|pp=592}}; {{harvnb|Kolthoff|Elving|1964|p=529}}</ref> Seluruh batang At dapat diperoleh sebagai endapan (sulfida) berwarna dari larutan akuatik garamnya;<ref name="Wulfsberg" /> astatin nampaknya mengendap dari larutannya dengan hidrogen sulfida tetapi, karena At tidak pernah disintesis dalam jumlah yang layak, warna endapat tidak diketahui.<ref name="Korenman" /><ref>{{harvnb|Close|2015|p=78}}</ref> Sebagai [[Blok tabel periodik|unsur blok-p]], kompleks mereka biasanya tak berwarna.<ref>{{harvnb|Parish|1977|p=89}}</ref>|group=n}}
Berdasarkan logam yang dirujuknya sebagai logam berat, ia menyarankan lebih bermanfaat untuk mendefinisikan mereka sebagai (secara umum) seluruh logam dalam tabel periodik kolom [[unsur golongan 3|ke-3]] hingga [[kalkogen|16]] yang berada pada [[unsur periode 4|baris 4]] dan seterusnya, dengan kata lain, [[logam transisi]] dan [[logam pasca transisi]] adalah logam berat.<ref name="Hawkes">{{harvnb|Hawkes|1997}}</ref>{{#tag:ref|Logam transisi dan pasca transisi yang tidak selalu membentuk kompleks berwarna adalah [[skandium|Sc]] dan [[yttrium|Y]] di [[unsur golongan 3|golongan 3]];<ref name=longo>{{harvnb|Longo|1974|p=683}}</ref> [[perak|Ag]] di [[Unsur golongan 11|golongan 11]];<ref>{{harvnb|Tomasik|Ratajewicz|1985|p=433}}</ref> [[seng|Zn]] dan [[kadmium|Cd]] di golongan 12;<ref name=longo /><ref name=Herron>{{harvnb|Herron|2000|p=511}}</ref> dan logam-logam golongan [[unsur golongan 13|13]]–[[unsur golongan 16|16]].<ref name=Nathans>{{harvnb|Nathans|1963|p=265}}</ref>|group=n}} [[Lantanida]] dapat memenuhi penjelasan tiga bagian Hawkes; tetapi status [[aktinida]] tidak sepenuhnya mapan;{{#tag:ref|Sulfida dan hidroksida lantanida (Ln) tidak larut;<ref>{{harvnb|Topp|1965|p=106}}: {{harvnb|Schweitzer|Pesterfield|2010|p=284}}</ref> yang terakhir dapat diperoleh dari larutan akuatik garam Ln sebagai endapan gelatin berwarna;<ref>{{harvnb|King|1995|p=297}}; {{harvnb|Mellor|1924|p=628}}</ref> dan kompleks Ln memiliki warna yang sama dengan ion akuanya (yang mayoritas berwarna).<ref>{{harvnb|Cotton|2006|pp=66}}</ref> Sulfida aktinida (An) mungkin larut atau tidak larut, tergantung penulisnya. [[Uranium monosulfida]] divalen tidak diserang oleh air mendidih.<ref>{{harvnb|Albutt|Dell|1963|p=1796}}</ref> Ion aktinida trivalen berperilaku mirip dengan ion lantanida trivalen, sehingga sulfidanya masih mungkin tidak larut tetapi hal ini tidak dinyatakan secara jelas.<ref>{{harvnb|Wiberg|2001|pp=1722–1723}}</ref> Sulfida An tetravalen terdekomposisi,<ref>{{harvnb|Wiberg|2001|p=1724}}</ref> tetapi Edelstein et al. menyatakan bahwa mereka dapat larut;<ref name=Edelstein>{{harvnb|Edelstein et al.|2010|p=1796}}</ref> sementara Haynes menyatakan [[thorium(IV) sulfida]] tidak larut.<ref>{{harvnb|Haynes|2015|pp=4–95}}</ref> Di awal sejarah fisi nuklir, telah dinyatakan bahwa pengendapan dengan [[hidrogen sulfida]] adalah cara yang "luar biasa" efektif untuk mengisolasi dan mendeteksi [[unsur transuranium]] dalam larutan.<ref>{{harvnb|Weart|1983|p=94}}</ref> Dengan nada yang sama, Deschlag menulis bahwa unsur-unsur setelah uranium diperkirakan mempunyai sulfida tak larut yang analog dengan logam transisi baris ketiga. Tetapi, ia melanjutkan bahwa unsur setelah [[aktinium]] ditemukan memiliki sifat yang berbeda dari logam transisi dan menyatakan mereka tidak membentuk sulfida tak larut.<ref>{{harvnb|Deschlag|2011|p=226}}</ref> Namun, hidroksida An tidak larut<ref name=Edelstein /> dan dapat diendapkan dari larutan akuatik garamnya.<ref name="Wulfsberg">{{harvnb|Wulfsberg|2000|pp=209–211}}</ref> Akhirnya, banyak kompleks An memiliki warna "dalam dan cerah".<ref>{{harvnb|Ahrland|Liljenzin|Rydberg|1973|p=478}}</ref>|group=n}}{{#tag:ref|Unsur yang lebih berat yang dikenal sebagai [[metaloid]]—[[germanium|Ge]]; [[arsenik|As]], [[antimon|Sb]]; [[selenium|Se]], [[telurium|Te]], [[polonium|Po]]; [[astatin|At]]—memenuhi beberapa dari tiga definisi Hawkes. Seluruhnya memiliki sulfida tak larut<ref name="Wulfsberg" /><ref name="Korenman">{{harvnb|Korenman|1959|p=1368}}</ref> tetapi hanya Ge, Te, dan Po yang tampaknya memiliki hidroksida tak larut yang efektif.<ref>{{harvnb|Yang|Jolly|O'Keefe|1977|p=2980}}; {{harvnb|Wiberg|2001|pp=592}}; {{harvnb|Kolthoff|Elving|1964|p=529}}</ref> Seluruh batang At dapat diperoleh sebagai endapan (sulfida) berwarna dari larutan akuatik garamnya;<ref name="Wulfsberg" /> astatin tampaknya mengendap dari larutannya dengan hidrogen sulfida tetapi, karena At tidak pernah disintesis dalam jumlah yang layak, warna endapat tidak diketahui.<ref name="Korenman" /><ref>{{harvnb|Close|2015|p=78}}</ref> Sebagai [[Blok tabel periodik|unsur blok-p]], kompleks mereka biasanya tak berwarna.<ref>{{harvnb|Parish|1977|p=89}}</ref>|group=n}}


Dalam [[biokimia]], logam berat kadang-kadang didefinisikan—berdasarkan perilaku [[asam Lewis]] (akseptor pasangan elektron) ion mereka dalam laruta akuatik—sebagai logam kelas B dan garis batas.<ref name=Rain /> Dalam skema ini, ion logam kelas A lebih menyukai donor [[oksigen]]; ion kelas B memilih donor [[nitrogen]] atau [[belerang]]; dan ion perbatasan atau ambivalen menunjukkan karakteristik kelas A atau B, tergantung situasinya.{{#tag:ref|Terminologi kelas A dan B analog dengan terminologi [[Teori HSAB|"asam keras" dan "basa lunak"]] yang kadang-kadang digunakan untuk merujuk perilaku ion logam sistem anorganik.<ref>{{harvnb|Nieboer|Richardson|1980|pp=6–7}}</ref>|group=n}} Logam kelas A, yang cenderung memiliki [[elektronegativitas]] rendah dan membentuk ikatan dengan [[ikatan ion|karakter ion]] yang besar, adalah [[logam alkali]] dan [[logam alkali tanah|alkali tanah]], [[aluminium]], [[unsur golongan 3|logam golongan 3]], dan lantanida serta aktinida.{{#tag:ref|Be dan Al adalah pengecualian untuk tren umum ini. Mereka memiliki nilai elektronegativitas yang lebih tinggi.<ref>{{harvnb|Lee|1996|pp=332; 364}}</ref> Karena ukurannya yang relatif kecil, ion +2 dan +3 mereka memiliki kerapatan muatan yang tinggi, sehingga mempolarisasi awan elektron di sekitarnya. Hasil bersihnya adalah bahwa senyawa Be dan Al memiliki karakter kovalen.<ref>{{harvnb|Clugston|Flemming|2000|pp=294; 334, 336}}</ref>|group=n}} Logam kelas B, yang cenderung memiliki elektronegativitas lebih tinggi dan membentuk ikatan dengan karakter [[ikatan kovalen|kovalen]] yang cukup besar, terutama adalah logam transisi dan logam pasca-transisi yang lebih berat. Logam garis batas sebagian besar terdiri dari logam transisi dan pasca-transisi yang lebih ringan (ditambah [[arsenik]] dan [[antimon]]). Perbedaan antara logam kelas A dan dua kategori lainnya cukup tajam.<ref>{{harvnb|Nieboer|Richardson|1980|p=7}}</ref> Proposal yang sering dikutip{{#tag:ref|[[Google Scholar]] [https://scholar.google.com.au/scholar?hl=en&q=The+replacement+of+the+nondescript+term+%27heavy+metals%27+by+a+biologically+and+chemically+significant+classification+of+metal+ions%22&btnG=&as_sdt=1%2C5&as_sdtp= has recorded] lebih dari 900 kutipan untuk makalah yang dimaksud.<ref>{{harvnb|Nieboer|Richardson|1980}}</ref>|group=n}} untuk menggunakan kategori klasifikasi ini daripada<ref name="Nieboer 1980 4" /> nama ''logam berat'' yang lebih menggugah belum banyak diadopsi.<ref>{{harvnb|Hübner|Astin|Herbert|2010|pp=1511–1512}}</ref>
Dalam [[biokimia]], logam berat kadang-kadang didefinisikan—berdasarkan perilaku [[asam Lewis]] (akseptor pasangan elektron) ion mereka dalam laruta akuatik—sebagai logam kelas B dan garis batas.<ref name=Rain /> Dalam skema ini, ion logam kelas A lebih menyukai donor [[oksigen]]; ion kelas B memilih donor [[nitrogen]] atau [[belerang]]; dan ion perbatasan atau ambivalen menunjukkan karakteristik kelas A atau B, tergantung situasinya.{{#tag:ref|Terminologi kelas A dan B analog dengan terminologi [[Teori HSAB|"asam keras" dan "basa lunak"]] yang kadang-kadang digunakan untuk merujuk perilaku ion logam sistem anorganik.<ref>{{harvnb|Nieboer|Richardson|1980|pp=6–7}}</ref>|group=n}} Logam kelas A, yang cenderung memiliki [[elektronegativitas]] rendah dan membentuk ikatan dengan [[ikatan ion|karakter ion]] yang besar, adalah [[logam alkali]] dan [[logam alkali tanah|alkali tanah]], [[aluminium]], [[unsur golongan 3|logam golongan 3]], dan lantanida serta aktinida.{{#tag:ref|Be dan Al adalah pengecualian untuk tren umum ini. Mereka memiliki nilai elektronegativitas yang lebih tinggi.<ref>{{harvnb|Lee|1996|pp=332; 364}}</ref> Karena ukurannya yang relatif kecil, ion +2 dan +3 mereka memiliki kerapatan muatan yang tinggi, sehingga mempolarisasi awan elektron di sekitarnya. Hasil bersihnya adalah bahwa senyawa Be dan Al memiliki karakter kovalen.<ref>{{harvnb|Clugston|Flemming|2000|pp=294; 334, 336}}</ref>|group=n}} Logam kelas B, yang cenderung memiliki elektronegativitas lebih tinggi dan membentuk ikatan dengan karakter [[ikatan kovalen|kovalen]] yang cukup besar, terutama adalah logam transisi dan logam pasca-transisi yang lebih berat. Logam garis batas sebagian besar terdiri dari logam transisi dan pasca-transisi yang lebih ringan (ditambah [[arsenik]] dan [[antimon]]). Perbedaan antara logam kelas A dan dua kategori lainnya cukup tajam.<ref>{{harvnb|Nieboer|Richardson|1980|p=7}}</ref> Proposal yang sering dikutip{{#tag:ref|[[Google Scholar]] [https://scholar.google.com.au/scholar?hl=en&q=The+replacement+of+the+nondescript+term+%27heavy+metals%27+by+a+biologically+and+chemically+significant+classification+of+metal+ions%22&btnG=&as_sdt=1%2C5&as_sdtp= has recorded] lebih dari 900 kutipan untuk makalah yang dimaksud.<ref>{{harvnb|Nieboer|Richardson|1980}}</ref>|group=n}} untuk menggunakan kategori klasifikasi ini daripada<ref name="Nieboer 1980 4" /> nama ''logam berat'' yang lebih menggugah belum banyak diadopsi.<ref>{{harvnb|Hübner|Astin|Herbert|2010|pp=1511–1512}}</ref>


=== Daftar logam berat berdasarkan densitas ===
=== Daftar logam berat berdasarkan densitas ===
Densitas di atas 5&nbsp;g/cm<sup>3</sup> kadang-kadang disebut sebagai faktor pendefinisi logam berat secara umum<ref>{{harvnb|Järup||2003|p=168}}; {{harvnb|Rasic-Milutinovic|Jovanovic|2013|p=6}}; {{harvnb|Wijayawardena|Megharaj|Naidu|2016|p=176}}</ref> dan, dengan tidak adanya definisi yang bulat, digunakan untuk mengisi daftar ini serta (kecuali jika dinyatakan lain) sebagai patokan dalam artikel ini. Metaloid yang memenuhi kriteria logam berat—arsen dan antimon misalnya—kadang kala diperhitungkan sebagai logam berat, terutama dalam [[kimia lingkungan]],<ref>{{harvnb|Duffus|2002|pp=794–795; 800}}</ref> seperti dalam kasus ini. [[Selenium]] (densitas 8&nbsp;g/cm<sup>3</sup>)<ref>{{harvnb|Emsley|2011|p=480}}</ref> juga termasuk dalam daftar. Ia sedikit di bawah kriteria kerapatan dan kurang dikenal sebagai metaloid,<ref name="Vernon" /> tetapi memiliki kimia dalam air yang serupa dengan arsen dan antimon dalam beberapa hal.<ref>{{harvnb|USEPA|1988|p=1}}; {{harvnb|Uden|2005|pp=347–348}}; {{harvnb|DeZuane|1997|p=93}}; {{harvnb|Dev|2008|pp=2–3}}</ref> Logam lain kadang diklasifikasikan atau diperlakukan sebagai logam "berat", seperti berilium<ref name="Ikehata">{{harvnb|Ikehata et al.|2015|p=143}}</ref> (densitas 1,8 g/cm<sup>3</sup>), aluminium<ref name="Ikehata" /> (2,7 g/cm<sup>3</sup>), kalsium<ref name="podsiki">{{harvnb| Podsiki |2008|p=1}}</ref> (1,55 g/cm<sup>3</sup>),<ref>{{harvnb|Emsley|2011|p=106}}</ref> dan barium<ref name="podsiki" /> (3,6 g/cm<sup>3</sup>)<ref>{{harvnb|Emsley|2011|p=62}}</ref> di sini diuji sebagai [[logam ringan]] dan, secara umum, tidak lagi dianggap.
Densitas di atas 5&nbsp;g/cm<sup>3</sup> kadang-kadang disebut sebagai faktor pendefinisi logam berat secara umum<ref>{{harvnb|Järup||2003|p=168}}; {{harvnb|Rasic-Milutinovic|Jovanovic|2013|p=6}}; {{harvnb|Wijayawardena|Megharaj|Naidu|2016|p=176}}</ref> dan, dengan tidak adanya definisi yang bulat, digunakan untuk mengisi daftar ini serta (kecuali jika dinyatakan lain) sebagai patokan dalam artikel ini. Metaloid yang memenuhi kriteria logam berat—arsen dan antimon misalnya—kadang kala diperhitungkan sebagai logam berat, terutama dalam [[kimia lingkungan]],<ref>{{harvnb|Duffus|2002|pp=794–795; 800}}</ref> seperti dalam kasus ini. [[Selenium]] (densitas 8&nbsp;g/cm<sup>3</sup>)<ref>{{harvnb|Emsley|2011|p=480}}</ref> juga termasuk dalam daftar. Ia sedikit di bawah kriteria kerapatan dan kurang dikenal sebagai metaloid,<ref name="Vernon" /> tetapi memiliki sifat kelarutan dalam dan reaktivitas dengan air yang serupa dengan arsen dan antimon dalam beberapa hal.<ref>{{harvnb|USEPA|1988|p=1}}; {{harvnb|Uden|2005|pp=347–348}}; {{harvnb|DeZuane|1997|p=93}}; {{harvnb|Dev|2008|pp=2–3}}</ref> Logam lain kadang diklasifikasikan atau diperlakukan sebagai logam "berat", seperti berilium<ref name="Ikehata">{{harvnb|Ikehata et al.|2015|p=143}}</ref> (densitas 1,8 g/cm<sup>3</sup>), aluminium<ref name="Ikehata" /> (2,7 g/cm<sup>3</sup>), kalsium<ref name="podsiki">{{harvnb| Podsiki |2008|p=1}}</ref> (1,55 g/cm<sup>3</sup>),<ref>{{harvnb|Emsley|2011|p=106}}</ref> dan barium<ref name="podsiki" /> (3,6 g/cm<sup>3</sup>)<ref>{{harvnb|Emsley|2011|p=62}}</ref> di sini diuji sebagai [[logam ringan]] dan, secara umum, tidak lagi dianggap.


{| class="wikitable" style="max-width: 800px; border-collapse: collapse;" summary="Tabel ini berisi 84 logam berat yang secara informal dikelompokkan ke dalam enam kategori: empat kategori untuk yang dihasilkan oleh pertambangan komersial dan dua kategori untuk yang diproduksi melalui sintesis nuklir. Masing-masing dari enam kategori diawali dengan tabel periodik mikro yang menyoroti unsur dalam kategori. Judul tabel periodik menyebutkan kategori; keterangannya menjelaskan kategori. Setelah tabel periodik, masing-masing kategori menyertakan daftar unsur. Beberapa nama unsur diikuti oleh penanda catatan kaki yang dijelaskan di akhir tabel."
{| class="wikitable" style="max-width: 800px; border-collapse: collapse;" summary="Tabel ini berisi 84 logam berat yang secara informal dikelompokkan ke dalam enam kategori: empat kategori untuk yang dihasilkan oleh pertambangan komersial dan dua kategori untuk yang diproduksi melalui sintesis nuklir. Masing-masing dari enam kategori diawali dengan tabel periodik mikro yang menyoroti unsur dalam kategori. Judul tabel periodik menyebutkan kategori; keterangannya menjelaskan kategori. Setelah tabel periodik, masing-masing kategori menyertakan daftar unsur. Beberapa nama unsur diikuti oleh penanda catatan kaki yang dijelaskan di akhir tabel."
Baris 232: Baris 232:
| colspan="2" style="text-align:center; background: {{element color|metal}}"|'''Diproduksi oleh pertambangan komersial''' <small>(diklasifikasikan secara informal berdasarkan kepentingan ekonomi)</small>
| colspan="2" style="text-align:center; background: {{element color|metal}}"|'''Diproduksi oleh pertambangan komersial''' <small>(diklasifikasikan secara informal berdasarkan kepentingan ekonomi)</small>
|- valign=top
|- valign=top
| {{periodic table (micro) | style="border:0px;" | title = Stratejik (30)
| {{periodic table (micro) | style="border:0px;" | title = Strategis (30)
| caption = Dianggap vital untuk kepentingan<br />strategis beberapa negara<ref>{{harvnb|Chakhmouradian|Smith|Kynicky|2015|pp=456–457}}</ref>{{hr}}''Daftar 30 logam ini mencakup 22<br />yang terdaftar di sini dan 8 di bawah<br />(6 logam berharga dan 2 komoditas).''
| caption = Dianggap vital untuk kepentingan<br />strategis beberapa negara<ref>{{harvnb|Chakhmouradian|Smith|Kynicky|2015|pp=456–457}}</ref>{{hr}}''Daftar 30 logam ini mencakup 22<br />yang terdaftar di sini dan 8 di bawah<br />(6 logam berharga dan 2 komoditas).''
| mark = Sb,Ce,Dy,Er,Eu,Gd,Ga,Ge,Ho,In,La,Lu,Nd,Nb,Pr,Sm,Ta,Tb,Tm,W,U,Yb
| mark = Sb,Ce,Dy,Er,Eu,Gd,Ga,Ge,Ho,In,La,Lu,Nd,Nb,Pr,Sm,Ta,Tb,Tm,W,U,Yb
Baris 250: Baris 250:
|<!--La-->[[Lantanum]]
|<!--La-->[[Lantanum]]
|<!--Lu-->[[Lutetium]]
|<!--Lu-->[[Lutetium]]
|<!--Nd-->[[Neodymium]]
|<!--Nd-->[[Neodimium]]
|<!--Nb-->[[Niobium]]
|<!--Nb-->[[Niobium]]
|<!--Pr-->[[Praseodymium]]
|<!--Pr-->[[Praseodymium]]
Baris 268: Baris 268:
{| style="width:100%;"
{| style="width:100%;"
|- style="vertical-align:top;"
|- style="vertical-align:top;"
| style="width:75%; | ''Stratejik:'' <hr width="95%" />
| style="width:75%; | ''Strategis:'' <hr width="95%" />
{{div col|3}} {{ unbulleted list | item_style = text-align:left;
{{div col|3}} {{ unbulleted list | item_style = text-align:left;
|<!--Ir-->[[Iridium]]
|<!--Ir-->[[Iridium]]
Baris 277: Baris 277:
|<!--Ru-->[[Ruthenium]]
|<!--Ru-->[[Ruthenium]]
}} {{div col end}}
}} {{div col end}}
| style="width:25%;" | ''Non-stratejik:'' <hr width="85%" />
| style="width:25%;" | ''Non-strategis:'' <hr width="85%" />
{{div col|1}} {{ unbulleted list | item_style = text-align:left;
{{div col|1}} {{ unbulleted list | item_style = text-align:left;
|<!--Au-->[[Emas]]
|<!--Au-->[[Emas]]
Baris 291: Baris 291:
{| style="width:100%;"
{| style="width:100%;"
|- style="vertical-align:top;"
|- style="vertical-align:top;"
| style="width:25%; | ''Stratejik:'' <hr width="85%" />
| style="width:25%; | ''Strategis:'' <hr width="85%" />
{{div col|1}} {{ unbulleted list | item_style = text-align:left;
{{div col|1}} {{ unbulleted list | item_style = text-align:left;
|<!--Cr-->[[Kromium]]
|<!--Cr-->[[Kromium]]
|<!--Co-->[[Kobalt]]
|<!--Co-->[[Kobalt]]
}} {{div col end}}
}} {{div col end}}
| style="width:75%;" | ''Non-stratejik:'' <hr width="95%" />
| style="width:75%;" | ''Non-strategis:'' <hr width="95%" />
{{div col|3}} {{ unbulleted list | item_style = text-align:left;
{{div col|3}} {{ unbulleted list | item_style = text-align:left;
|<!--Cu-->[[Tembaga]]
|<!--Cu-->[[Tembaga]]
Baris 358: Baris 358:
|
|
{{div col|4}} {{ unbulleted list | item_style = text-align:left;
{{div col|4}} {{ unbulleted list | item_style = text-align:left;
|<!--At-->[[Astatin]]<sup>[[Berkas:Radioactive.svg|12px|alt=Radioaktif]]</sup><small>&thinsp;</small>'''<sup>{{abbr|‡|astatin}}</sup><small>&thinsp;</small><sup>{{abbr|¶|alami tetapi tidak umum}}</sup>'''
|<!--At-->[[Astatin]]<sup>[[Berkas:Radioactive.svg|12px|alt=Radioaktif]]</sup><small></small>'''<sup>{{abbr|‡|astatin}}</sup><small></small><sup>{{abbr|¶|alami tetapi tidak umum}}</sup>'''
|<!--Bh-->[[Bohrium]]<sup>[[Berkas:Radioactive.svg|12px|alt=Radioaktif]]</sup>
|<!--Bh-->[[Bohrium]]<sup>[[Berkas:Radioactive.svg|12px|alt=Radioaktif]]</sup>
|<!--Cn-->[[Copernicium]]<sup>[[Berkas:Radioactive.svg|12px|alt=Radioaktif]]</sup>
|<!--Cn-->[[Copernicium]]<sup>[[Berkas:Radioactive.svg|12px|alt=Radioaktif]]</sup>
Baris 390: Baris 390:


== Asal dan penggunaan istilah ==
== Asal dan penggunaan istilah ==
Beratnya [[logam alami|logam yang terjadi secara alami]] seperti [[emas]], [[tembaga]], dan [[besi]] mungkin telah diperhatikan sejak masa [[prasejarah]] dan, mengingat [[Keuletan (fisika)|kelenturannya]], mencetuskan usaha pertama untuk menciptakan ornamen, alat, dan senjata logam.<ref>{{harvnb|Raymond|1984|pp=8–9}}</ref> Semua logam yang ditemukan sejak saat itu sampai 1809 memiliki kerapatan yang relatif tinggi; beratnya mereka dianggap sebagai kriteria yang sangat berbeda.<ref>{{harvnb|Chambers|1743}}: "Yang membedakan ''logam'' dari semua benda lainnya&nbsp;... adalah beratnya&nbsp;..."</ref>
Seberapa berat [[logam alami|logam yang terbentuk secara alami]] seperti [[emas]], [[tembaga]], dan [[besi]] mungkin telah diperhatikan sejak masa [[prasejarah]] dan, mengingat [[Keuletan (fisika)|kelenturannya]], mencetuskan usaha pertama untuk menciptakan ornamen, alat, dan senjata logam.<ref>{{harvnb|Raymond|1984|pp=8–9}}</ref> Semua logam yang ditemukan sejak saat itu sampai 1809 memiliki kerapatan yang relatif tinggi; seberapa berat mereka dianggap sebagai kriteria yang sangat berbeda.<ref>{{harvnb|Chambers|1743}}: "Yang membedakan ''logam'' dari semua benda lainnya&nbsp;... adalah beratnya&nbsp;..."</ref>


Sejak 1809 dan seterusnya, logam ringan seperti natrium, kalium, dan [[strontium]] diisolasi. Densitas mereka yang rendah menantang kearifan konvensional dan diusulkan untuk menyebut mereka sebagai [[metaloid]] (artinya "menyerupai logam dalam bentuk maupun penampilan").<ref>{{harvnb|''Oxford English Dictionary''|1989}}; {{harvnb|Gordh|Headrick|2003|p=753}}</ref> Saran ini diabaikan; unsur baru kemudian dikenali sebagai logam, dan istilah metaloid kemudian digunakan untuk merujuk pada unsur nonlogam dan, kemudian, untuk unsur yang sulit dijelaskan sebagai logam atau nonlogam.<ref>{{harvnb|Goldsmith|1982|p=526}}</ref>
Sejak 1809 dan seterusnya, logam ringan seperti natrium, kalium, dan [[strontium]] diisolasi. Densitas mereka yang rendah menantang pemikiran konvensional dan diusulkan untuk menyebut mereka sebagai [[metaloid]] (artinya "menyerupai logam dalam bentuk maupun penampilan").<ref>{{harvnb|''Oxford English Dictionary''|1989}}; {{harvnb|Gordh|Headrick|2003|p=753}}</ref> Saran ini diabaikan; unsur baru kemudian dikenali sebagai logam, dan istilah metaloid kemudian digunakan untuk merujuk pada unsur non-logam dan, kemudian, untuk unsur yang sulit dijelaskan sebagai logam atau non-logam.<ref>{{harvnb|Goldsmith|1982|p=526}}</ref>


Penggunaan awal istilah "logam berat" berasal dari tahun 1817, ketika kimiawan Jerman [[Leopold Gmelin]] membagi unsur-unsur ke dalam kelompok nonlogam, logam ringan, dan logam berat.<ref>{{harvnb|Habashi|2009|p=31}}</ref> Logam ringan memiliki densitas 0,860-5,0&nbsp;g/cm<sup>3</sup>; logam berat 5,308-22,000.<ref>{{harvnb|Gmelin|1849|p=2}}</ref>{{#tag:ref|Jika Gmelin telah bekerja dengan ukuran [[satuan imperial|sistem bobot imperial]], mungkin dia memilih 300&nbsp;lbs/ft<sup>3</sup> sebagai cutoff logam ringan/beratnya dimana selenium (densitas 300,27&nbsp;lbs/ft<sup>3</sup>) akan dibuat sebagai patokan, sementara 5&nbsp;g/cm<sup>3</sup> = 312,14&nbsp;lbs/ft<sup>3</sup>.|group=n}} Istilah ini kemudian dikaitkan dengan unsur-unsur dengan berat atom atau nomor atom tinggi.<ref name="Duffus797" /> Kadang-kadang istilah ini digunakan secara bergantian dengan istilah ''unsur berat''. Misalnya, dalam membahas sejarah [[kimia nuklir]], Magee<ref>{{harvnb|Magee|1969|p=14}}</ref> mencatat bahwa aktinida itu pernah dianggap mewakili kelompok transisi elemen berat yang baru sedangkan [[Glenn T. Seaborg|Seaborg]] beserta rekan kerjanya, "menyukai&nbsp;... suatu deret seperti logam berat [[Lantanida|tanah jarang]]&nbsp;...". Dalam [[astronomi]], unsur berat adalah unsur yang lebih berat daripada [[hidrogen]] dan [[helium]].<ref>{{harvnb|Ridpath|2012|p=208}}</ref>
Penggunaan awal istilah "logam berat" berasal dari tahun 1817, ketika kimiawan Jerman [[Leopold Gmelin]] membagi unsur-unsur ke dalam kelompok nonlogam, logam ringan, dan logam berat.<ref>{{harvnb|Habashi|2009|p=31}}</ref> Logam ringan memiliki densitas 0,860-5,0&nbsp;g/cm<sup>3</sup>; logam berat 5,308-22,000.<ref>{{harvnb|Gmelin|1849|p=2}}</ref>{{#tag:ref|Jika Gmelin telah bekerja dengan ukuran [[satuan imperial|sistem bobot imperial]], mungkin dia memilih 300&nbsp;lbs/ft<sup>3</sup> sebagai cutoff logam ringan/beratnya dimana selenium (densitas 300,27&nbsp;lbs/ft<sup>3</sup>) akan dibuat sebagai patokan, sementara 5&nbsp;g/cm<sup>3</sup> = 312,14&nbsp;lbs/ft<sup>3</sup>.|group=n}} Istilah ini kemudian dikaitkan dengan unsur-unsur dengan berat atom atau nomor atom tinggi.<ref name="Duffus797" /> Kadang-kadang istilah ini digunakan secara bergantian dengan istilah ''unsur berat''. Misalnya, dalam membahas sejarah [[kimia nuklir]], Magee<ref>{{harvnb|Magee|1969|p=14}}</ref> mencatat bahwa aktinida itu pernah dianggap mewakili kelompok transisi elemen berat yang baru sedangkan [[Glenn T. Seaborg|Seaborg]] beserta rekan kerjanya, "menyukai&nbsp;... suatu deret seperti logam-berat-[[Lantanida|tanah langka]]&nbsp;...". Dalam [[astronomi]], unsur berat adalah unsur yang lebih berat daripada [[hidrogen]] dan [[helium]].<ref>{{harvnb|Ridpath|2012|p=208}}</ref>


=== Kritik ===
=== Kritik ===
Pada tahun 2002, toksikolog Skotlandia [[John Henderson Duffus|John Duffus]] meninjau kembali definisi yang telah digunakan selama 60 tahun dan menyimpulkan bahwa definisi tersebut begitu beragam sehingga efektif membuat istilah itu tidak berarti.<ref>{{harvnb|Duffus|2002|p=794}}</ref> Seiring dengan temuan ini, status logam berat beberapa logam terkadang ditentang dengan alasan bahwa mereka terlalu ringan, atau terlibat dalam proses biologis, atau jarang membahayakan lingkungan. Contohnya antara lain skandium (terlalu ringan);<ref name="Duffus797" /><ref>{{harvnb|Leeper|1978|p=ix}}</ref> [[vanadium]] hingga [[seng]] (terlibat proses biologis);<ref name="Housecroft">{{harvnb|Housecroft|2008|p=802}}</ref> dan [[rhodium]], [[indium]], serta [[osmium]] (terlalu langka).<ref>{{harvnb|Shaw|Sahu|Mishra|1999|p=89}}; {{harvnb|Martin|Coughtrey|1982|pp=2–3}}</ref>
Pada tahun 2002, toksikolog Skotlandia [[John Henderson Duffus|John Duffus]] meninjau kembali definisi yang telah digunakan selama 60 tahun dan menyimpulkan bahwa definisi tersebut begitu beragam sehingga secara efektif membuat istilah itu tidak berarti.<ref>{{harvnb|Duffus|2002|p=794}}</ref> Seiring dengan temuan ini, status logam berat beberapa logam terkadang ditentang dengan alasan bahwa mereka terlalu ringan, atau terlibat dalam proses biologis, atau jarang membahayakan lingkungan. Contohnya antara lain skandium (terlalu ringan);<ref name="Duffus797" /><ref>{{harvnb|Leeper|1978|p=ix}}</ref> [[vanadium]] hingga [[seng]] (terlibat proses biologis);<ref name="Housecroft">{{harvnb|Housecroft|2008|p=802}}</ref> dan [[rhodium]], [[indium]], serta [[osmium]] (terlalu langka).<ref>{{harvnb|Shaw|Sahu|Mishra|1999|p=89}}; {{harvnb|Martin|Coughtrey|1982|pp=2–3}}</ref>


=== Popularitas ===
=== Popularitas ===
Baris 435: Baris 435:
|}
|}


Sejumlah renik beberapa logam berat, sebagian besar berada pada periode 4, diperlukan untuk proses biologis tertentu. Logam tersebut adalah [[besi]] dan [[tembaga]] (untuk transportasi oksigen dan [[Rantai transpor elektron|elektron]]); [[kobalt]] ([[Vitamin B12|sintesis kompleks dan metabolisme sel]]); [[seng]] ([[hidroksilasi]]);<ref>{{harvnb|Nieboer|Richardson|1978|p=2}}</ref> [[vanadium]] dan [[mangan]] (fungsi dan [[Kofaktor (biokimia)|pengatur enzim]]); [[kromium]] (pemanfaatan [[glukosa]]); [[nikel]] ([[reproduksi sel]]); [[arsenik]] (pertumbuhan metabolik pada beberapa hewan dan mungkin pada manusia) dan [[selenium]] (fungsi [[antioksidan]] dan produksi [[hormon]]).<ref>{{harvnb|Emsley|2011|pp=604; 31; 133; 358; 47; 475}}</ref> Periode 5 dan 6 mengandung lebih sedikit logam berat esensial, selaras dengan pola umum bahwa unsur yang lebih berat cenderung kurang melimpah dan unsur-unsur langka cenderung kurang penting dalam hal nutrisi.<ref>{{harvnb|Valkovic|1990|pp=214, 218}}</ref> Dalam [[Unsur periode 5|periode 5]], [[molibdenum]] diperlukan sebagai [[katalis]] dalam reaksi [[redoks]]; [[kadmium]] kadang-kadang digunakan oleh beberapa [[diatom]] laut untuk fungsi yang sama; dan [[timah]] mungkin diperlukan untuk pertumbuhan sedikit spesies.<ref>{{harvnb|Emsley|2011|pp=331; 89; 552}}</ref> Pada [[Unsur periode 6|periode 6]], [[tungsten]] diperlukan oleh beberapa bakteri untuk [[proses metabolisme]].<ref>{{harvnb|Emsley|2011|p=571}}</ref> [[Komposisi tubuh manusia|Tubuh manusia]] dengan berat rata-rata 70&nbsp;kg mengandung sekitar 0,01% logam berat (~7&nbsp;g, ekivalen dengan berat dua kacang polong kering, yang terdiri dari besi sekitar 4&nbsp;g, seng 2,5&nbsp;g, dan timbal 0,12&nbsp;g), 2% logam ringan (~1,4&nbsp;kg, setara berat botol anggur) dan hampir 98% nonlogam (sebagian besar [[air]]).<ref>{{harvnb|Emsley|2011|pp=24; passim}}</ref><!-- Catatan: kacang polong, botol anggur, dan air tidak ada dalam sumber rujukan-->{{#tag:ref|Dari unsur-unsur yang umum dikenal sebagai metaloid, B dan Si dihitung sebagai non-logam; Ge, As, Sb, dan Te sebagai logam berat.|group=n}}
Sejumlah renik beberapa logam berat, sebagian besar berada pada periode 4, diperlukan untuk proses biologis tertentu. Logam tersebut adalah [[besi]] dan [[tembaga]] (untuk transportasi oksigen dan [[Rantai transpor elektron|elektron]]); [[kobalt]] ([[Vitamin B12|sintesis kompleks dan metabolisme sel]]); [[seng]] ([[hidroksilasi]]);<ref>{{harvnb|Nieboer|Richardson|1978|p=2}}</ref> [[vanadium]] dan [[mangan]] (fungsi dan [[Kofaktor (biokimia)|pengatur enzim]]); [[kromium]] (pemanfaatan [[glukosa]]); [[nikel]] ([[reproduksi sel]]); [[arsenik]] (pertumbuhan metabolik pada beberapa hewan dan mungkin pada manusia) dan [[selenium]] (fungsi [[antioksidan]] dan produksi [[hormon]]).<ref>{{harvnb|Emsley|2011|pp=604; 31; 133; 358; 47; 475}}</ref> Periode 5 dan 6 mengandung lebih sedikit logam berat esensial, selaras dengan pola umum bahwa unsur yang lebih berat cenderung kurang melimpah dan unsur-unsur langka cenderung kurang penting dalam hal nutrisi.<ref>{{harvnb|Valkovic|1990|pp=214, 218}}</ref> Dalam [[Unsur periode 5|periode 5]], [[molibdenum]] diperlukan sebagai [[katalis]] dalam reaksi [[redoks]]; [[kadmium]] kadang-kadang digunakan oleh beberapa [[diatom]] laut untuk fungsi yang sama; dan [[timah]] mungkin diperlukan untuk pertumbuhan sedikit spesies.<ref>{{harvnb|Emsley|2011|pp=331; 89; 552}}</ref> Pada [[Unsur periode 6|periode 6]], [[tungsten]] diperlukan oleh beberapa [[arkea]] dan [[bakteri]] untuk [[proses metabolisme]].<ref>{{harvnb|Emsley|2011|p=571}}</ref> [[Komposisi tubuh manusia|Tubuh manusia]] dengan berat rata-rata 70&nbsp;kg mengandung sekitar 0,01% logam berat (~7&nbsp;g, ekivalen dengan berat dua kacang polong kering, yang terdiri dari besi sekitar 4&nbsp;g, seng 2,5&nbsp;g, dan timbal 0,12&nbsp;g), 2% logam ringan (~1,4&nbsp;kg, setara berat botol anggur) dan hampir 98% nonlogam (sebagian besar [[air]]).<ref>{{harvnb|Emsley|2011|pp=24; passim}}</ref><!-- Catatan: kacang polong, botol anggur, dan air tidak ada dalam sumber rujukan-->{{#tag:ref|Dari unsur-unsur yang umum dikenal sebagai metaloid, B dan Si dihitung sebagai non-logam; Ge, As, Sb, dan Te sebagai logam berat.|group=n}}


Defisiensi logam berat esensial periode 4-6 ini dapat meningkatkan kerentanan [[keracunan logam berat]].<ref>{{harvnb|Venugopal|Luckey|1978|p=307}}</ref> Sedikit logam berat non-esensial juga telah diamati memiliki efek biologis. [[Galium]], [[germanium]] (suatu metaloid), [[indium]], dan sebagian besar [[lantanida]] dapat menstimulasi metabolisme, sedangkan [[titanium]] meningkatkan pertumbuhan pada tanaman,<ref>{{harvnb|Emsley|2011|pp=192; 197; 240; 120, 166, 188, 224, 269, 299, 423, 464, 549, 614; 559}}</ref> (meski tidak selalu dianggap sebagai logam berat).
Defisiensi logam berat esensial periode 4-6 ini dapat meningkatkan kerentanan terhadap [[keracunan logam berat]].<ref>{{harvnb|Venugopal|Luckey|1978|p=307}}</ref> Sebagian kecil logam berat non-esensial juga telah diamati memiliki efek biologis. [[Galium]], [[germanium]] (suatu metaloid), [[indium]], dan sebagian besar [[lantanida]] dapat menstimulasi metabolisme, sedangkan [[titanium]] meningkatkan pertumbuhan pada tanaman,<ref>{{harvnb|Emsley|2011|pp=192; 197; 240; 120, 166, 188, 224, 269, 299, 423, 464, 549, 614; 559}}</ref> (meski tidak selalu dianggap sebagai logam berat).
{{clear}}
{{clear}}


Baris 446: Baris 446:


=== Logam berat lingkungan ===
=== Logam berat lingkungan ===
Kromium, arsenik, kadmium, merkuri, dan timbal memiliki potensi terbesar yang dapat menyebabkan kerusakan karena penggunaannya yang luas, [[toksisitas]] beberapa bentuk gabungan atau unsurnya, dan penyebarannya yang luas di lingkungan.<ref>{{harvnb|Baird|Cann|2012|p=519}}</ref> [[Kromium heksavalen]], misalnya, sangat beracun seperti uap raksa dan banyak senyawa raksa.<ref>{{harvnb|Kozin|Hansen|2013|p=80}}</ref> Kelima unsur ini memiliki affinitas yang kuat terhadap belerang; dalam tubuh manusia mereka biasanya terikat pada [[enzim]], melalui gugus [[tiol]] (-SH), yang bertanggung jawab untuk mengendalikan laju reaksi metabolik. Ikatan belerang-logam yang dihasilkan menghambat fungsi enzim yang terlibat; memperburuk kesehatan manusia, kadang-kadang berakibat fatal.<ref>{{harvnb|Baird|Cann|2012|pp=519–520; 567}}; {{harvnb|Rusyniak et al.|2010|p=387}}</ref> Kromium (dalam bentuk heksavalennya) dan arsenik adalah [[karsinogen]]; kadmium menyebabkan [[Penyakit itai-itai|penyakit tulang degeneratif]]; dan raksa dan timbal merusak [[sistem syaraf pusat]]
Kromium, arsenik, kadmium, merkuri, dan timbal memiliki potensi terbesar yang dapat menyebabkan kerusakan karena penggunaannya yang luas, [[toksisitas]] beberapa bentuk gabungan atau unsurnya, dan penyebarannya yang luas di lingkungan.<ref>{{harvnb|Baird|Cann|2012|p=519}}</ref> [[Kromium heksavalen]], misalnya, sangat beracun seperti uap raksa dan banyak senyawa raksa.<ref>{{harvnb|Kozin|Hansen|2013|p=80}}</ref> Kelima unsur ini memiliki affinitas yang kuat terhadap belerang; dalam tubuh manusia mereka biasanya terikat pada [[enzim]], melalui gugus [[tiol]] (-SH), yang bertanggung jawab untuk mengendalikan laju reaksi metabolik. Ikatan belerang-logam yang dihasilkan menghambat fungsi enzim yang terlibat; memperburuk kesehatan manusia, kadang-kadang berakibat fatal.<ref>{{harvnb|Baird|Cann|2012|pp=519–520; 567}}; {{harvnb|Rusyniak et al.|2010|p=387}}</ref> Kromium (dalam bentuk heksavalennya) dan arsenik adalah [[karsinogen]]; kadmium menyebabkan [[Penyakit itai-itai|penyakit tulang degeneratif]]; dan raksa dan timbal merusak [[sistem saraf pusat]]


<gallery widths="165px" heights="165px>
<gallery widths="165px" heights="165px>
Baris 456: Baris 456:
</gallery>
</gallery>


Timbal adalah kontaminan logam berat yang paling umum.<ref>{{harvnb|Di Maio|2001|p=208}}</ref> Tingkatannya di lingkungan perairan masyarakat industri diperkirakan dua sampai tiga kali tingkatan di masa pra-industri.<ref>{{harvnb|Perry|Vanderklein|1996|p=208}}</ref> Sebagai komponen [[tetraetil timbal]], {{chem2|(CH|3|CH|2|)|4|Pb}}, timbal digunakan secara luas dalam [[bensin]] selama tahun 1930-1970an.<ref>{{harvnb|Love|1998|p=208}}</ref> Meskipun penggunaan bensin bertimbal sudah lenyap dari bumi Amerika Utara pada tahun 1996, tanah di sekitar jalan yang dibangun sebelum masa ini mengandung timbal dalam konsentrasi tinggi.<ref>{{harvnb|Hendrickson|2016|p=42}}</ref> Penelitian terakhir menunjukkan korelasi statistik yang signifikan antara laju penggunaan bensin bertimbal dan tingkat kriminalitas dengan kekerasan di Amerika Serikat; dengan memperhitungkan jeda waktu 22 tahun (untuk usia rata-rata kriminal dengan kekerasan), kurva kejahatan dengan kekerasan sebanding dengan kurva paparan timah.<ref>{{harvnb|Reyes|2007|pp=1, 20, 35–36}}</ref>
Timbal adalah kontaminan logam berat yang paling umum.<ref>{{harvnb|Di Maio|2001|p=208}}</ref> Tingkatannya di lingkungan perairan masyarakat industri diperkirakan dua sampai tiga kali tingkatan di masa pra-industri.<ref>{{harvnb|Perry|Vanderklein|1996|p=208}}</ref> Sebagai komponen [[tetraetil timbal]], {{chem2|(CH|3|CH|2|)|4|Pb}}, timbal digunakan secara luas dalam [[bensin]] selama tahun 1930-1970-an.<ref>{{harvnb|Love|1998|p=208}}</ref> Meskipun penggunaan bensin bertimbal sudah lenyap dari bumi Amerika Utara pada tahun 1996, tanah di sekitar jalan yang dibangun sebelum masa ini mengandung timbal dalam konsentrasi tinggi.<ref>{{harvnb|Hendrickson|2016|p=42}}</ref> Penelitian terakhir menunjukkan korelasi statistik yang signifikan antara laju penggunaan bensin bertimbal dan tingkat kriminalitas dengan kekerasan di Amerika Serikat; dengan memperhitungkan jeda waktu 22 tahun (untuk usia rata-rata kriminal dengan kekerasan), kurva kejahatan dengan kekerasan sebanding dengan kurva paparan timbal.<ref>{{harvnb|Reyes|2007|pp=1, 20, 35–36}}</ref>


Logam berat lainnya yang dicatat untuk sifat potensi bahayanya, biasanya sebagai polutan toksik lingkungan, termasuk mangan (kerusakan sitem syaraf pusat);<ref>{{harvnb|Emsley|2011|p=311}}</ref> kobalt dan [[nikel]] ([[karsinogen]]);<ref>{{harvnb|Wiberg|2001|pp=1474, 1501}}</ref> tembaga,<ref name="Tokar" /> seng,<ref>{{harvnb|Eisler|1993|pp=3, passim}}</ref> selenium<ref>{{harvnb|Lemony|1997|p=259}}; {{harvnb|Ohlendorf|2003|p=490}}</ref> dan [[perak]]<ref>{{harvnb|State Water Control Resources Board|1987|p=63}}</ref> (gangguan [[sistem endokrin|endokrin]], [[kelainan bawaan]], atau efek keracunan umum pada ikan, tumbuhan, unggas, atau organisme air lainnya); timah, sebagai [[organotimah]] (kerusakan sistem syaraf pusat);<ref>{{harvnb|Scott|1989|pp=107–108}}</ref> antimon (ditengarai karsinogen);<ref>{{harvnb|International Antimony Association|2016}}</ref> dan [[talium]] (kerusakan sistem syaraf pusat).<ref name="Tokar" />{{#tag:ref|Ni, Cu, Zn, Se, Ag dan Sb terdaftar dalam ''Daftar Polutan Beracun'' yang diterbitkan oleh Pemerintah Amerika Serikat;<ref>{{harvnb|United States Government|2014}}</ref> Mn, Co, dan Sn terdaftar dalam ''Inventaris Polutan Nasional'' yang diterbitkan oleh Pemerintah Australia.<ref>{{harvnb|Australian Government|2016}}</ref>|group=n}}{{#tag:ref|Tungsten bisa jadi logam berat beracun lainnya.<ref name="United States Environmental Protection Agency 2014">{{harvnb|United States Environmental Protection Agency|2014}}</ref>|group=n}}
Logam berat lainnya yang dicatat untuk sifat potensi bahayanya, biasanya sebagai polutan toksik lingkungan, termasuk mangan (kerusakan sitem saraf pusat);<ref>{{harvnb|Emsley|2011|p=311}}</ref> kobalt dan [[nikel]] ([[karsinogen]]);<ref>{{harvnb|Wiberg|2001|pp=1474, 1501}}</ref> tembaga,<ref name="Tokar" /> seng,<ref>{{harvnb|Eisler|1993|pp=3, passim}}</ref> selenium<ref>{{harvnb|Lemony|1997|p=259}}; {{harvnb|Ohlendorf|2003|p=490}}</ref> dan [[perak]]<ref>{{harvnb|State Water Control Resources Board|1987|p=63}}</ref> (gangguan [[sistem endokrin|endokrin]], [[kelainan bawaan]], atau efek keracunan umum pada ikan, tumbuhan, unggas, atau organisme air lainnya); timah, sebagai [[organotimah]] (kerusakan sistem saraf pusat);<ref>{{harvnb|Scott|1989|pp=107–108}}</ref> antimon (ditengarai karsinogen);<ref>{{harvnb|International Antimony Association|2016}}</ref> dan [[talium]] (kerusakan sistem saraf pusat).<ref name="Tokar" />{{#tag:ref|Ni, Cu, Zn, Se, Ag dan Sb terdaftar dalam ''Daftar Polutan Beracun'' yang diterbitkan oleh Pemerintah Amerika Serikat;<ref>{{harvnb|United States Government|2014}}</ref> Mn, Co, dan Sn terdaftar dalam ''Inventaris Polutan Nasional'' yang diterbitkan oleh Pemerintah Australia.<ref>{{harvnb|Australian Government|2016}}</ref>|group=n}}{{#tag:ref|Tungsten bisa jadi logam berat beracun lainnya.<ref name="United States Environmental Protection Agency 2014">{{harvnb|United States Environmental Protection Agency|2014}}</ref>|group=n}}


=== Logam berat nutrisi esensial ===
=== Logam berat nutrisi esensial ===
Logam berat yang penting untuk kehidupan bisa menjadi racun jika dikonsumsi berlebihan; beberapa memiliki bentuk beracun yang sangat penting. [[Vanadium pentoksida]] ({{chem2|V|2|O|5}}) bersifat karsinogenik pada hewan dan, bila dihirup, menyebabkan kerusakan [[DNA]].<ref name="Tokar">{{harvnb|Tokar et al.|2013}}</ref> Ion ungu [[permanganat]] MnO{{su|b=4|p=–}} adalah racun [[liver]] dan [[ginjal]].<ref>{{harvnb|Ong|Tan|Cheung|1997|p=44}}</ref> Menelan lebih dari 0,5 gram zat besi dapat menyebabkan gagal jantung; Overdosis semacam itu paling sering terjadi pada anak-anak dan bisa berakibat kematian dalam waktu 24 jam.<ref name="Tokar" /> [[Nikel karbonil]] ({{chem2|Ni|2|(CO)|4}}), dengan kadar 30 ppm, dapat menyebabkan kegagalan pernafasan, kerusakan otak dan kematian.<ref name="Tokar" /> Mengkonsumsi<!--Imbibing--> 1 gram atau lebih [[tembaga(II) sulfat|tembaga sulfat]] ({{chem2|Cu(SO|4|)|2}}) dapat berakibat fatal; korban selamat mungkin mengalami kerusakan organ yang parah.<ref>{{harvnb|Emsley|2011|p=146}}</ref> Lebih dari lima miligram selenium sangat beracun; ini kira-kira sepuluh kali dari asupan harian maksimum yang direkomendasikan (0,45 mg);<ref>{{harvnb|Emsley|2011|p=476}}</ref> keracunan jangka panjang bisa mengakibatkan efek paralitik.<ref name="Tokar" />{{#tag:ref|Selenium logam berat esensial bagi mamalia yang paling beracun.<ref>{{harvnb|Selinger|1978|p=369}}</ref>|group=n}}
Logam berat yang penting untuk kehidupan bisa menjadi racun jika dikonsumsi berlebihan; beberapa memiliki bentuk beracun yang sangat penting. [[Vanadium pentoksida]] ({{chem2|V|2|O|5}}) bersifat karsinogenik pada hewan dan, bila dihirup, menyebabkan kerusakan [[DNA]].<ref name="Tokar">{{harvnb|Tokar et al.|2013}}</ref> Ion ungu [[permanganat]] MnO{{su|b=4|p=–}} adalah racun [[liver]] dan [[ginjal]].<ref>{{harvnb|Ong|Tan|Cheung|1997|p=44}}</ref> Menelan lebih dari 0,5 gram zat besi dapat menyebabkan gagal jantung; Overdosis semacam itu paling sering terjadi pada anak-anak dan bisa berakibat kematian dalam waktu 24 jam.<ref name="Tokar" /> [[Nikel karbonil]] ({{chem2|Ni|2|(CO)|4}}), dengan kadar 30 ppm, dapat menyebabkan kegagalan pernafasan, kerusakan otak dan kematian.<ref name="Tokar" /> Mengkonsumsi<!--Imbibing--> 1 gram atau lebih [[tembaga(II) sulfat|tembaga sulfat]] ({{chem2|Cu(SO|4|)|2}}) dapat berakibat fatal; korban selamat mungkin mengalami kerusakan organ yang parah.<ref>{{harvnb|Emsley|2011|p=146}}</ref> Lebih dari lima miligram selenium sangat beracun; ini kira-kira sepuluh kali dari asupan harian maksimum yang direkomendasikan (0,45&nbsp;mg);<ref>{{harvnb|Emsley|2011|p=476}}</ref> keracunan jangka panjang bisa mengakibatkan efek paralitik.<ref name="Tokar" />{{#tag:ref|Selenium logam berat esensial bagi mamalia yang paling beracun.<ref>{{harvnb|Selinger|1978|p=369}}</ref>|group=n}}


=== Logam berat lainnya ===
=== Logam berat lainnya ===
Beberapa logam berat non-esensial memiliki satu atau lebih bentuk yang beracun. Kegagalan dan fatalitas ginjal telah tercatat timbul dari konsumsi suplemen germannium (konsumsi total ~15 hingga 300&nbsp;g selama periode dua bulan hingga tiga tahun).<ref name="Tokar" /> Paparan [[osmium tetroksida]] ({{chem2|OsO|4}}) dapat menyebabkan kerusakan mata permanen dan memicu kegagalan respirasi<ref>{{harvnb|Cole|Stuart|2000|p=315}}</ref> serta kematian.<ref>{{harvnb|Clegg|2014}}</ref> Garam indium beracun jika dikonsumsi lebih dari beberapa miligram dan akan berdampak pada ginjal, liver, dan jantung.<ref>{{harvnb|Emsley|2011|p=240}}</ref> [[Cisplatin]] ({{chem2|PtCl|2|(NH|3|)|2}}), yang merupakan obat penting yang digunakan untuk [[kemoterapi|membunuh sel kanker]], juga merupakan racun bagi ginjal dan syaraf.<ref name="Tokar" /> Senyawa [[bismut]] dapat menyebabkan kerusakan liver jika dikonsumsi berlebih; senyawa uranium yang tidak larut, serta [[Kerusakan karena radiasi|radiasi]] berbahaya yang dipancarkannya, dapat menyebabkan kerusakan ginjal permanen.<ref>{{harvnb|Emsley|2011|p=595}}</ref>
Beberapa logam berat non-esensial memiliki satu atau lebih bentuk yang beracun. Kegagalan dan fatalitas ginjal telah tercatat timbul dari konsumsi suplemen germannium (konsumsi total ~15 hingga 300&nbsp;g selama periode dua bulan hingga tiga tahun).<ref name="Tokar" /> Paparan [[osmium tetroksida]] ({{chem2|OsO|4}}) dapat menyebabkan kerusakan mata permanen dan memicu kegagalan respirasi<ref>{{harvnb|Cole|Stuart|2000|p=315}}</ref> serta kematian.<ref>{{harvnb|Clegg|2014}}</ref> Garam indium beracun jika dikonsumsi lebih dari beberapa miligram dan akan berdampak pada ginjal, liver, dan jantung.<ref>{{harvnb|Emsley|2011|p=240}}</ref> [[Cisplatin]] ({{chem2|PtCl|2|(NH|3|)|2}}), yang merupakan obat penting yang digunakan untuk [[kemoterapi|membunuh sel kanker]], juga merupakan racun bagi ginjal dan saraf.<ref name="Tokar" /> Senyawa [[bismut]] dapat menyebabkan kerusakan liver jika dikonsumsi berlebih; senyawa uranium yang tidak larut, serta [[Kerusakan karena radiasi|radiasi]] berbahaya yang dipancarkannya, dapat menyebabkan kerusakan ginjal permanen.<ref>{{harvnb|Emsley|2011|p=595}}</ref>


=== Sumber paparan ===
=== Sumber paparan ===
Logam berat dapat menurunkan kualitas udara, air, dan tanah, dan kemudian menyebabkan masalah kesehatan bagi tanaman, hewan, dan manusia, ketika terjadi penumpukan sebagai hasil aktivitas industri.<ref>{{harvnb|Stankovic|Stankovic|2013|pp=154–159}}</ref> Sumber logam berat yang umum dalam konteks ini meliputi aktivitas pertambangan dan limbah industri; gas buang kendaraan; [[baterai timbal-asam]]; pupuk; [[Dampak lingkungan cat|cat]]; dan [[pengawetan kayu|kayu olahan]];<ref>{{harvnb|Bradl|2005|pp=15, 17–20}}</ref> [[Pipa (saluran)|infrastruktur pasokan air yang sudah tua]];<ref>{{harvnb|Harvey|Handley|Taylor|2015|p=12276}}</ref> dan [[mikroplastik]] yang terapung di samudera dunia.<ref>{{harvnb|Howell et al.|2012}}; {{harvnb|Cole et al.|2011|pp=2589–2590}}</ref> Contoh terkini kontaminasi logam berat dan resiko kesehatan meliputi kasus [[penyakit Minamata]], Jepang (1932-1968; tuntutan hukum tahun 2016);<ref>{{harvnb|Amasawa et al.|2016|pp=95–101}}</ref> [[bencana bendungan Bento Rodrigues]] di Brazil,<ref>{{harvnb|Massarani|2015}}</ref> kandungan timbal yang tinggi pada pasokan air minum kepada penduduk [[Krisis air Flint|Flint]], Michigan, di timur laut Amerika Serikat.<ref>{{harvnb|Torrice|2016}}</ref>
Logam berat dapat menurunkan kualitas udara, air, dan tanah, dan kemudian menyebabkan masalah kesehatan bagi tanaman, hewan, dan manusia, ketika terjadi penumpukan sebagai hasil aktivitas industri.<ref>{{harvnb|Stankovic|Stankovic|2013|pp=154–159}}</ref> Sumber logam berat yang umum dalam konteks ini meliputi aktivitas pertambangan dan limbah industri; gas buang kendaraan; [[baterai asam timbal]]; pupuk; [[Dampak lingkungan cat|cat]]; dan [[pengawetan kayu|kayu olahan]];<ref>{{harvnb|Bradl|2005|pp=15, 17–20}}</ref> [[Pipa (saluran)|infrastruktur pasokan air yang sudah tua]];<ref>{{harvnb|Harvey|Handley|Taylor|2015|p=12276}}</ref> dan [[mikroplastik]] yang terapung di samudera dunia.<ref>{{harvnb|Howell et al.|2012}}; {{harvnb|Cole et al.|2011|pp=2589–2590}}</ref> Contoh terkini kontaminasi logam berat dan risiko kesehatan meliputi kasus [[penyakit Minamata]], Jepang (1932-1968; tuntutan hukum tahun 2016);<ref>{{harvnb|Amasawa et al.|2016|pp=95–101}}</ref> [[bencana bendungan Bento Rodrigues]] di Brazil,<ref>{{harvnb|Massarani|2015}}</ref> kandungan timbal yang tinggi pada pasokan air minum kepada penduduk [[Krisis air Flint|Flint]], Michigan, di timur laut Amerika Serikat.<ref>{{harvnb|Torrice|2016}}</ref>


== Pembentukan, kelimpahan, keterjadian, dan ekstraksi ==
== Pembentukan, kelimpahan, keterjadian, dan ekstraksi ==
Baris 569: Baris 569:
|style="background:#ffffa6; border-left:1px dashed black; border-top:1px solid #f8f8f8; border-right:1px solid #f8f8f8; border-bottom:1px solid #f8f8f8"|[[Antimon|Sb]]
|style="background:#ffffa6; border-left:1px dashed black; border-top:1px solid #f8f8f8; border-right:1px solid #f8f8f8; border-bottom:1px solid #f8f8f8"|[[Antimon|Sb]]
|style="background:#ffd2a6; border-left:1px solid #f8f8f8; border-top:1px solid #f8f8f8; border-right:1px solid #f8f8f8; border-bottom:1px solid #f8f8f8"|[[Telurium|Te]]
|style="background:#ffd2a6; border-left:1px solid #f8f8f8; border-top:1px solid #f8f8f8; border-right:1px solid #f8f8f8; border-bottom:1px solid #f8f8f8"|[[Telurium|Te]]
|style="border-left:1px solid #f8f8f8; border-top:1px solid #f8f8f8; border-right:1px solid #f8f8f8; border-bottom:1px solid #f8f8f8"|[[Iodine|&thinsp;I&thinsp;]]
|style="border-left:1px solid #f8f8f8; border-top:1px solid #f8f8f8; border-right:1px solid #f8f8f8; border-bottom:1px solid #f8f8f8"| [[Iodine|I]]
|style="border-left:1px solid #f8f8f8; border-top:1px solid #f8f8f8; border-right:1px solid #f8f8f8; border-bottom:1px solid #f8f8f8"|[[Xenon|Xe]]
|style="border-left:1px solid #f8f8f8; border-top:1px solid #f8f8f8; border-right:1px solid #f8f8f8; border-bottom:1px solid #f8f8f8"|[[Xenon|Xe]]
|- <!-- All column widths are set in this (almost complete) row -->
|- <!-- All column widths are set in this (almost complete) row -->
Baris 665: Baris 665:
Logam berat sampai [[puncak besi|sekitar besi]] (dalam tabel periodik) sebagian besar terbentuk melalui [[nukleosintesis stelar|nukleosintesis bintang]]. Dalam proses ini, unsur yang lebih ringan mulai dari hidrogen hingga [[silikon]] mengalami reaksi [[Fusi nuklir|fusi]] berturut-turut di dalam bintang, melepaskan cahaya dan panas dan membentuk unsur yang lebih berat dengan nomor atom yang lebih tinggi.<ref name="Cox">{{harvnb|Cox|1997|pp=73–89}}</ref>
Logam berat sampai [[puncak besi|sekitar besi]] (dalam tabel periodik) sebagian besar terbentuk melalui [[nukleosintesis stelar|nukleosintesis bintang]]. Dalam proses ini, unsur yang lebih ringan mulai dari hidrogen hingga [[silikon]] mengalami reaksi [[Fusi nuklir|fusi]] berturut-turut di dalam bintang, melepaskan cahaya dan panas dan membentuk unsur yang lebih berat dengan nomor atom yang lebih tinggi.<ref name="Cox">{{harvnb|Cox|1997|pp=73–89}}</ref>


Logam berat yang lebih berat biasanya tidak terbentuk melalui cara ini karena reaksi fusi yang melibatkan inti tersebut akan lebih mengkonsumsi energi daripada melepaskan energi.<ref>{{harvnb|Cox|1997|pp=32, 63, 85}}</ref> Sebaliknya, sebagian besar disintesis (dari unsur dengan nomor atom yang lebih rendah) melalui [[Tangkapan neutron|penangkapan neutron]], dengan dua moda utama penangkapan berulang ini adalah [[proses s]] dan [[proses r]]. Dalam proses s ("s" singkatan dari "''slow''", '''lambat'''), tangkapan tunggal dipisahkan oleh tahun atau dekade, sehingga inti yang tidak stabil mengalami [[peluruhan beta]],<ref>{{harvnb|Podosek|2011|p=482}}</ref> Sementara dalam proses r ("''rapid''", '''cepat'''), tangkapan terjadi lebih cepat dari pada peluruhan nuklir. Oleh karena itu, proses s membutuhkan jalur yang kurang lebih jelas: sebagai contoh, nukleium kadmium-110 yang stabil dibombardir secara berturut-turut oleh neutron bebas di dalam bintang sampai membentuk inti kadmium-115 yang tidak stabil dan meluruh membentuk indium-115 (yang hampir stabil, dengan waktu paruh {{val|30000}} kali usia alam semesta). Inti ini menangkap neutron dan membentuk indium-116, yang tidak stabil, dan meluruh membentuk timah-116, dan seterusnya.<ref name="Cox" /><ref>{{harvnb|Padmanabhan|2001|p=234}}</ref>{{#tag:ref|Dalam beberapa kasus, misalnya dengan adanya [[fotodisintegrasi|sinar gamma energi tinggi]] atau dalam suatu [[proses rp|lingkungan kaya hidrogen pada suhu sangat tinggi]], inti subjek dapat mengalami kehilangan neutron atau menarik proton yang menghasilkan (relatif jarang) [[inti p|isotop yang kekurangan neutron]].<ref>{{harvnb|Rehder|2010|pp=32, 33}}</ref>|group=n}} Sebaliknya, tidak ada jalur seperti itu dalam proses r. Proses s berhenti di bismut karena dua unsur berikutnya, polonium dan astatine, memiliki waktu paruh pendek, yang meluruh menjadi bismut atau timbal. Proses r sangat cepat sehingga bisa melewati zona ketidakstabilan ini dan terus membentuk unsur yang lebih berat seperti [[thorium]] dan uranium.<ref>{{harvnb|Hofmann|2002|pp=23–24}}</ref>
Logam berat yang lebih berat biasanya tidak terbentuk melalui cara ini karena reaksi fusi yang melibatkan inti tersebut akan lebih mengkonsumsi energi daripada melepaskan energi.<ref>{{harvnb|Cox|1997|pp=32, 63, 85}}</ref> Sebaliknya, sebagian besar disintesis (dari unsur dengan nomor atom yang lebih rendah) melalui [[Tangkapan neutron|penangkapan neutron]], dengan dua moda utama penangkapan berulang ini adalah [[proses s]] dan [[proses r]]. Dalam proses s ("s" singkatan dari "''slow''", '''lambat'''), tangkapan tunggal dipisahkan oleh tahun atau dekade, sehingga inti yang tidak stabil mengalami [[peluruhan beta]],<ref>{{harvnb|Podosek|2011|p=482}}</ref> Sementara dalam proses r ("''rapid''", '''cepat'''), tangkapan terjadi lebih cepat daripada peluruhan nuklir. Oleh karena itu, proses s membutuhkan jalur yang kurang lebih jelas: sebagai contoh, inti kadmium-110 yang stabil dibombardir secara berturut-turut oleh neutron bebas di dalam bintang sampai membentuk inti kadmium-115 yang tidak stabil dan meluruh membentuk indium-115 (yang hampir stabil, dengan waktu paruh {{val|30000}} kali usia alam semesta). Inti ini menangkap neutron dan membentuk indium-116, yang tidak stabil, dan meluruh membentuk timah-116, dan seterusnya.<ref name="Cox" /><ref>{{harvnb|Padmanabhan|2001|p=234}}</ref>{{#tag:ref|Dalam beberapa kasus, misalnya dengan adanya [[fotodisintegrasi|sinar gamma energi tinggi]] atau dalam suatu [[proses rp|lingkungan kaya hidrogen pada suhu sangat tinggi]], inti subjek dapat mengalami kehilangan neutron atau menarik proton yang menghasilkan (relatif jarang) [[inti p|isotop yang kekurangan neutron]].<ref>{{harvnb|Rehder|2010|pp=32, 33}}</ref>|group=n}} Sebaliknya, tidak ada jalur seperti itu dalam proses r. Proses s berhenti di bismut karena dua unsur berikutnya, polonium dan astatin, memiliki waktu paruh pendek, yang meluruh menjadi bismut atau timbal. Proses r sangat cepat sehingga bisa melewati zona ketidakstabilan ini dan terus membentuk unsur yang lebih berat seperti [[thorium]] dan uranium.<ref>{{harvnb|Hofmann|2002|pp=23–24}}</ref>


Logam berat memadat di planet-planet sebagai hasil proses evolusi dan destruksi bintang. Bintang kehilangan sebagian besar massa mereka saat [[Kehilangan massa bintang|terlontar]] di akhir masa hidup mereka, dan kadang-kadang, sebagai hasil penggabungan [[bintang neutron]],<ref>{{harvnb|Hadhazy|2016}}</ref>{{#tag:ref|Pelontatan materi ketika dua bintang neutron bertabrakan dikaitkan dengan interaksi [[gaya Tidal]], kemungkinan gangguan kerak bumi, dan guncangan akibat panas (itulah yang terjadi jika Anda meletakkan akselerator ke dalam mobil saat mesin masih dingin).<ref>{{harvnb|Choptuik|Lehner|Pretorias|2015|p=383}}</ref>|group=n}} akan meningkatkan kelimpahan unsur yang lebih berat daripada helium di [[medium antarbintang|media antar bintang]]. Ketika daya tarik gravitasi menyebabkan materi ini menyatu dan runtuh, [[Hipotesis nebula|terbentuklah bintang dan planet baru]].<ref>{{harvnb|Cox|1997|pp=83, 91, 102–103}}</ref>
Logam berat memadat di planet-planet sebagai hasil proses evolusi dan destruksi bintang. Bintang kehilangan sebagian besar massa mereka saat [[Kehilangan massa bintang|terlontar]] di akhir masa hidup mereka, dan kadang-kadang, sebagai hasil penggabungan [[bintang neutron]],<ref>{{harvnb|Hadhazy|2016}}</ref>{{#tag:ref|Pelontatan materi ketika dua bintang neutron bertabrakan dikaitkan dengan interaksi [[gaya Tidal]], kemungkinan gangguan kerak bumi, dan guncangan akibat panas (itulah yang terjadi jika Anda meletakkan akselerator ke dalam mobil saat mesin masih dingin).<ref>{{harvnb|Choptuik|Lehner|Pretorias|2015|p=383}}</ref>|group=n}} akan meningkatkan kelimpahan unsur yang lebih berat daripada helium di [[medium antarbintang|media antar bintang]]. Ketika daya tarik gravitasi menyebabkan materi ini menyatu dan runtuh, [[Hipotesis nebula|terbentuklah bintang dan planet baru]].<ref>{{harvnb|Cox|1997|pp=83, 91, 102–103}}</ref>


Kerak bumi terbuat dari kira-kira 5% logam berat, dengan 95%nya (dari 5% tersebut) adalah besi. Sedangkan 95% sisanya adalah logam ringan (~20%) dan nonlogam (~75%).<ref name="Lide">{{harvnb|Lide|2004|pp=14–17}}</ref> Meskipun logam berat secara keseluruhan langka, ia dapat terkonsentrasi dalam jumlah yang dapat diekstraksi secara ekonomis akibat [[pembentukan gunung]], [[erosi]], atau [[geomorfologi|proses geologi]] lainnya.<ref>{{harvnb|Berry|Mason|1959|pp=210–211}}; {{harvnb|Rankin|2011|p=69}}</ref>
Kerak bumi terbuat dari kira-kira 5% logam berat, dengan 95%nya (dari 5% tersebut) adalah besi. Sedangkan 95% sisanya adalah logam ringan (~20%) dan non-logam (~75%).<ref name="Lide">{{harvnb|Lide|2004|pp=14–17}}</ref> Meskipun logam berat secara keseluruhan langka, ia dapat terkonsentrasi dalam jumlah yang dapat diekstraksi secara ekonomis akibat [[pembentukan gunung]], [[erosi]], atau [[geomorfologi|proses geologi]] lainnya.<ref>{{harvnb|Berry|Mason|1959|pp=210–211}}; {{harvnb|Rankin|2011|p=69}}</ref>


Logam berat terutama ditemukan sebagai [[Klasifikasi Goldschmidt#Elemen Litofil|litofil]] (cinta batu) atau [[Klasifikasi Goldschmidt#Elemen Kalkofil|kalkofil]] (cinta bijih). Logam berat litofil terutama adalah unsur-unsur blok-f dan [[blok-d]] yang lebih reaktif. Mereka memiliki afinitas yang kuat terhadap oksigen dan sebagian besar berada sebagai [[mineral silikat]] dengan densitas relatif rendah.<ref>{{harvnb|Hartmann|2005|p=197}}</ref> Logam berat kalkofil terutama adalah unsur-unsur blok d yang kurang reaktif, dan logam [[blok-p]] periode 4-6 serta metaloid. Mereka biasanya ditemukan dalam [[mineral sulfida]] yang tidak larut. Kalkofil lebih padat daripada litofil, sehingga tenggelam lebih rendah ke dalam kerak pada saat pemadatannya, ia cenderung kurang melimpah dibandingkan dengan litofil.<ref>{{harvnb|Yousif |2007|pp=11–12}}</ref>
Logam berat terutama ditemukan sebagai [[Klasifikasi Goldschmidt#Elemen Litofil|litofil]] (kecenderungan menyatu dengan batu) atau [[Klasifikasi Goldschmidt#Elemen Kalkofil|kalkofil]] (kecenderungan menyatu dengan mineral). Logam berat litofil terutama adalah unsur-unsur blok-f dan [[blok-d]] yang lebih reaktif. Mereka memiliki afinitas yang kuat terhadap oksigen dan sebagian besar berada sebagai [[mineral silikat]] dengan densitas relatif rendah.<ref>{{harvnb|Hartmann|2005|p=197}}</ref> Logam berat kalkofil terutama adalah unsur-unsur blok d yang kurang reaktif, dan logam [[blok-p]] periode 4-6 serta metaloid. Mereka biasanya ditemukan dalam [[mineral sulfida]] yang tidak larut. Kalkofil lebih padat daripada litofil, sehingga tenggelam lebih rendah ke dalam kerak pada saat pemadatannya, ia cenderung kurang melimpah dibandingkan dengan litofil.<ref>{{harvnb|Yousif |2007|pp=11–12}}</ref>


Di sisi lain, [[emas]] adalah unsur [[Klasifikasi Goldschmidt#Elemen Siderofil|siderofil]], atau pecinta besi. Ia tidak mudah membentuk senyawa dengan oksigen maupun belerang.<ref>{{harvnb|Berry|Mason|1959|pp=214}}</ref> Pada saat [[pembentukan bumi]], dan sebagai logam yang paling [[Logam mulia|mulia]] (inert), emas tenggelam ke dalam [[Struktur bumi#Inti|inti]] karena kecenderungannya untuk membentuk logam paduan densitas tinggi. Konsekuensinya, ini adalah logam yang relatif langka.<ref>{{harvnb|Yousif |2007|pp=11}}</ref> Beberapa logam berat (kurang) mulia lainnya—[[molibdenum]], [[rhenium]], [[Golongan platina|logam golongan platina]] ([[ruthenium]], [[rhodium]], [[paladium]], [[osmium]], [[iridium]], dan [[platina]]), [[germanium]], dan [[timah]]—dapat diperhitungkan sebagai siderofil tapi hanya dalam hal kejadian utama mereka di bumi (inti, [[Struktur bumi#Mantel|mantel]], dan kerak), bukan kerak bumi. Logam-logam ini dinyatakan terjadi di kerak bumi, dalam jumlah kecil, terutama sebagai kalkofil (jarang yang berada dalam [[logam alami|bentuk aslinya]]).<ref>{{harvnb|Wiberg|2001|p=1511}}</ref>{{#tag:ref|Besi, kobalt, nikel, germanium dan timah juga merupakan siderophiles dari perspektif Bumi secara keseluruhan.<ref name="McQueen">{{harvnb|McQueen|2009|p=74}}</ref>|group=n}}
Di sisi lain, [[emas]] adalah unsur [[Klasifikasi Goldschmidt#Elemen Siderofil|siderofil]], atau cenderung menyatu dengan besi. Ia tidak mudah membentuk senyawa dengan oksigen maupun belerang.<ref>{{harvnb|Berry|Mason|1959|pp=214}}</ref> Pada saat [[pembentukan bumi]], dan sebagai logam yang paling [[Logam mulia|mulia]] (inert), emas tenggelam ke dalam [[Struktur bumi#Inti|inti]] karena kecenderungannya untuk membentuk logam paduan densitas tinggi. Konsekuensinya, ini adalah logam yang relatif langka.<ref>{{harvnb|Yousif |2007|pp=11}}</ref> Beberapa logam berat (kurang) mulia lainnya—[[molibdenum]], [[rhenium]], [[Golongan platina|logam golongan platina]] ([[ruthenium]], [[rhodium]], [[paladium]], [[osmium]], [[iridium]], dan [[platina]]), [[germanium]], dan [[timah]]—dapat diperhitungkan sebagai siderofil tapi hanya dalam hal kejadian utama mereka di bumi (inti, [[Struktur bumi#Mantel|mantel]], dan kerak), bukan kerak bumi. Logam-logam ini dinyatakan terjadi di kerak bumi, dalam jumlah kecil, terutama sebagai kalkofil (jarang yang berada dalam [[logam alami|bentuk aslinya]]).<ref>{{harvnb|Wiberg|2001|p=1511}}</ref>{{#tag:ref|Besi, kobalt, nikel, germanium dan timah juga merupakan siderophiles dari perspektif Bumi secara keseluruhan.<ref name="McQueen">{{harvnb|McQueen|2009|p=74}}</ref>|group=n}}


Konsentrasi logam berat di bawah kerak bumi umumnya lebih tinggi, sebagian besar ditemukan dalam inti besi-silikon-nikel. [[Platina]], misalnya, menyusun sekitar 1 bagian per miliar kerak sedangkan konsentrasinya pada intinya diperkirakan hampir 6.000 kali lebih tinggi.<ref>{{harvnb|Emsley|2011|p=403}}</ref><ref>{{harvnb|Litasov|Shatskiy|2016|p=27}}</ref> Spekulasi baru-baru ini menunjukkan bahwa uranium (dan torium) dalam inti bumi dapat menghasilkan panas dalam jumlah besar yang mendorong [[lempeng tektonik]] dan (akhirnya) menopang [[medan magnet bumi]].<ref>{{harvnb|Sanders|2003}}; {{harvnb|Preuss|2011}}</ref>{{#tag:ref|Panas yang keluar dari inti padat bagian dalam diyakini bisa menghasilkan gerakan di bagian luar, yang terbuat dari paduan besi cair. Gerakan cairan ini menghasilkan arus listrik yang menimbulkan medan magnet.<ref>{{harvnb|Natural Resources Canada|2015}}</ref>|group=n}}
Konsentrasi logam berat di bawah kerak bumi umumnya lebih tinggi, sebagian besar ditemukan dalam inti besi-silikon-nikel. [[Platina]], misalnya, menyusun sekitar 1 bagian per miliar kerak sedangkan konsentrasinya pada intinya diperkirakan hampir 6.000 kali lebih tinggi.<ref>{{harvnb|Emsley|2011|p=403}}</ref><ref>{{harvnb|Litasov|Shatskiy|2016|p=27}}</ref> Spekulasi terkini menunjukkan bahwa uranium (dan torium) dalam inti bumi dapat menghasilkan panas dalam jumlah besar yang mendorong [[lempeng tektonik]] dan (akhirnya) menopang [[medan magnet bumi]].<ref>{{harvnb|Sanders|2003}}; {{harvnb|Preuss|2011}}</ref>{{#tag:ref|Panas yang keluar dari inti padat bagian dalam diyakini bisa menghasilkan gerakan di bagian luar, yang terbuat dari paduan besi cair. Gerakan cairan ini menghasilkan arus listrik yang menimbulkan medan magnet.<ref>{{harvnb|Natural Resources Canada|2015}}</ref>|group=n}}


Untuk memperoleh logam berat dari bijihnya cukup kompleks karena harus memperhatikan jenis bijih, sifat kimia logam yang terlibat, dan nilai ekonomis beragam metode ekstrksi. Negara dan pengolahan yang berbeda mungkin menggunakan proses yang berbeda, termasuk yang berbeda dari yang dikupas di sini.
Untuk memperoleh logam berat dari bijihnya cukup kompleks karena harus memperhatikan jenis bijih, sifat kimia logam yang terlibat, dan nilai ekonomis dari berbagai metode ekstraksi yang tersedia. Negara dan pengolahan yang berbeda mungkin menggunakan proses yang berbeda, termasuk yang berbeda dari yang dikupas di sini.


Secara garis besar, dan dengan beberapa pengecualian, logam berat litofil dapat diekstraksi dari bijihnya dengan memberi perlakuan [[elektroekstraksi|listrik]] atau [[redoks|kimia]], sedangkan logam berat kalkofil diperoleh dengan [[pemanggangan (metalurgi)|memanggang]] bijih sulfida mereka untuk menghasilkan oksida yang sesuai, dan kemudian memanaskannya untuk mendapatkan logam mentah.<ref>{{harvnb|MacKay|MacKay|Henderson|2002|pp=203–204}}</ref>{{#tag:ref|Logam berat yang terjadi secara alami dalam jumlah yang terlalu kecil untuk ditambang secara ekonomis (Tc, Pm, Po, At, Ac, Np dan Pu), diproduksi melalui [[transmutasi nuklir|transmutasi buatan]].<ref>{{harvnb|Emsley|2011|pp=525–528; 428–429; 414; 57–58; 22; 346–347; 408–409}}; {{harvnb|Keller|Wolf|Shani|2012|p=98}}</ref> Metode yang terakhir ini juga digunakan untuk menghasilkan logam berat dari americium dan seterusnya.<ref>{{harvnb|Emsley|2011|pp=32 et seq.}}</ref>|group=n}} Radium terjadi dalam jumlah yang terlalu kecil untuk ditambang ekonomis malah dapat diperoleh dari pemakaian [[bahan bakar nuklir]].<ref>{{harvnb|Emsley|2011|pp=437}}</ref> Kalkofil logam golongan platina (PGM) terutama terjadi dalam jumlah kecil (campuran) dengan bijih kalkofil lainnya. Bijih yang terlibat perlu [[peleburan (metalurgi)|dilebur]], dipanggang, lalu [[pelindian|dilindi]] (''leaching'') dengan [[asam sulfat]] untuk menghasilkan residu PGM. Ini kemudian disuling secara kimia untuk mendapatkan masing-masing logam dalam bentuk murni mereka.<ref>{{harvnb|Chen|Huang|2006|p=208}}; {{harvnb|Crundwell et al.|2011|pp=411–413}}; {{harvnb|Renner et al.|2012|p=332}}; {{harvnb|Seymour|O'Farrelly|2012|pp=10–12}}</ref> Dibandingkan logam lainnya, PGM relatif mahal karena kelangkaannya<ref>{{harvnb|Crundwell et al.|2011|p=409}}</ref> dan biaya produksinya yang tinggi.<ref>{{harvnb|International Platinum Group Metals Association|n.d.|pp=3–4}}</ref>
Secara garis besar, dan dengan beberapa pengecualian, logam berat litofil dapat diekstraksi dari bijihnya dengan memberi perlakuan [[elektroekstraksi|listrik]] atau [[redoks|kimia]], sedangkan logam berat kalkofil diperoleh dengan [[pemanggangan (metalurgi)|memanggang]] bijih sulfida mereka untuk menghasilkan oksida yang sesuai, dan kemudian memanaskannya untuk mendapatkan logam mentah.<ref>{{harvnb|MacKay|MacKay|Henderson|2002|pp=203–204}}</ref>{{#tag:ref|Logam berat yang terjadi secara alami dalam jumlah yang terlalu kecil untuk ditambang secara ekonomis (Tc, Pm, Po, At, Ac, Np dan Pu), diproduksi melalui [[transmutasi nuklir|transmutasi buatan]].<ref>{{harvnb|Emsley|2011|pp=525–528; 428–429; 414; 57–58; 22; 346–347; 408–409}}; {{harvnb|Keller|Wolf|Shani|2012|p=98}}</ref> Metode yang terakhir ini juga digunakan untuk menghasilkan logam berat dari americium dan seterusnya.<ref>{{harvnb|Emsley|2011|pp=32 et seq.}}</ref>|group=n}} Radium terjadi dalam jumlah yang terlalu kecil untuk ditambang ekonomis malah dapat diperoleh dari pemakaian [[bahan bakar nuklir]].<ref>{{harvnb|Emsley|2011|pp=437}}</ref> Kalkofil logam golongan platina (PGM) terutama terjadi dalam jumlah kecil (campuran) dengan bijih kalkofil lainnya. Bijih yang terlibat perlu [[peleburan (metalurgi)|dilebur]], dipanggang, lalu [[pelindian|dilindi]] (''leaching'') dengan [[asam sulfat]] untuk menghasilkan residu PGM. Ini kemudian disuling secara kimia untuk mendapatkan masing-masing logam dalam bentuk murni mereka.<ref>{{harvnb|Chen|Huang|2006|p=208}}; {{harvnb|Crundwell et al.|2011|pp=411–413}}; {{harvnb|Renner et al.|2012|p=332}}; {{harvnb|Seymour|O'Farrelly|2012|pp=10–12}}</ref> Dibandingkan logam lainnya, PGM relatif mahal karena kelangkaannya<ref>{{harvnb|Crundwell et al.|2011|p=409}}</ref> dan biaya produksinya yang tinggi.<ref>{{harvnb|International Platinum Group Metals Association|n.d.|pp=3–4}}</ref>
Baris 738: Baris 738:
=== Berdasarkan berat atau densitas ===
=== Berdasarkan berat atau densitas ===


[[Berkas:CelloCloseup1.jpg|thumb|Dalam [[cello]] (contoh yang ditunjukkan di atas) atau biola, [[dawai]] C terkadang mengandung [[tungsten]]; densitasnya yang tinggi memungkinkan membentuk dawai berdiameter lebih kecil dan meningkatkan daya tanggap.<ref>{{harvnb| Prieto|2011|p=10}}; {{harvnb|Pickering|1991|pp=5–6, 17}}</ref>|alt=Looking down on the top of a small wooden boat-like shape. Four metal strings run along the middle of the shape down its long axis. The strings pass over a small raised wooden bridge positioned in the centre of the shape so that the strings sit above the deck of the cello.]]
[[Berkas:CelloCloseup1.jpg|jmpl|Dalam [[cello]] (contoh yang ditunjukkan di atas) atau biola, [[dawai]] C terkadang mengandung [[tungsten]]; densitasnya yang tinggi memungkinkan membentuk dawai berdiameter lebih kecil dan meningkatkan daya tanggap.<ref>{{harvnb| Prieto|2011|p=10}}; {{harvnb|Pickering|1991|pp=5–6, 17}}</ref>|alt=Looking down on the top of a small wooden boat-like shape. Four metal strings run along the middle of the shape down its long axis. The strings pass over a small raised wooden bridge positioned in the centre of the shape so that the strings sit above the deck of the cello.]]


Beberapa penggunaan logam berat, termasuk di bidang olah raga, [[teknik mesin]], [[artileri|persenjataan militer]], dan [[teknik nuklir]], memanfaatkan kerapatan mereka yang relatif tinggi. Dalam [[selam|dunia penyelaman]], timbal digunakan sebagai [[tangki ballast|''ballast'']];<ref name="Emsley 2011 286">{{harvnb|Emsley|2011|p=286}}</ref> dalam [[handicapping#Pacuan kuda|pacuan kuda cacat]] masing-masing kuda harus membawa timbal dengan bobot yang telah ditentukan, berdasarkan faktor termasuk kinerja sebelumnya, sehingga dapat mengimbangi peluang berbagai pesaing.<ref>{{harvnb|Berger|Bruning|1979|p=173}}</ref> Dalam [[golf]], sisipan tungsten, [[kuningan (logam)|kuningan]], atau tembaga pada [[tongkat golf]] (''club'') untuk [[fairway]] menurunkan pusat gravitasi ''club'' sehingga memudahkan untuk melayangkan bola ke udara;<ref>{{harvnb|Jackson|Summitt|2006|pp=10, 13}}</ref> dan bola golf dengan inti tungsten diklaim memiliki karakteristik layang yang lebih baik.<ref>{{harvnb|Shedd|2002|p=80.5}}; {{harvnb|Kantra|2001|p=10}}</ref> Dalam ''[[fly fishing]]'',{{#tag:ref|''Fly fishing'' adalah teknik memancing dengan menggunakan umpan artifisial yang menyerupai lalat atau serangga| group=n}} umpan lalat memiliki lapisan [[polivinil klorida|PVC]] yang dicampur dengan bubuk tungsten, sehingga mereka tenggelam pada tingkat yang dibutuhkan.<ref>{{harvnb|Spolek|2007|p=239}}</ref> Dalam olahraga lapangan, bola baja yang digunakan dalam event [[lontar martil]] dan [[tolak peluru]] diisi dengan timbal untuk mencapai berat minimum yang dibutuhkan berdasarkan peraturan internasional.<ref>{{harvnb|White|2010|p=139}}</ref> Tungsten digunakan dalam bola lontar martil setidaknya sampai tahun 1980; ukuran bola minimum meningkat pada tahun 1981 untuk menghilangkan kebutuhan akan logam mahal (tiga kali lipat biaya martil lainnya) yang umumnya tidak tersedia di semua negara.<ref>{{harvnb|Dapena|Teves|1982|p=78}}</ref> Martil tungsten sangat padat sehingga mereka menembus terlalu dalam ke rumput.<ref>{{harvnb|Burkett|2010|p=80}}</ref>
Beberapa penggunaan logam berat, termasuk di bidang olahraga, [[teknik mesin]], [[artileri|persenjataan militer]], dan [[teknik nuklir]], memanfaatkan kerapatan mereka yang relatif tinggi. Dalam [[selam|dunia penyelaman]], timbal digunakan sebagai [[tangki ballast|''ballast'']];<ref name="Emsley 2011 286">{{harvnb|Emsley|2011|p=286}}</ref> dalam [[handicapping#Pacuan kuda|pacuan kuda cacat]] masing-masing kuda harus membawa timbal dengan bobot yang telah ditentukan, berdasarkan faktor termasuk kinerja sebelumnya, sehingga dapat mengimbangi peluang berbagai pesaing.<ref>{{harvnb|Berger|Bruning|1979|p=173}}</ref> Dalam [[golf]], sisipan tungsten, [[kuningan (logam)|kuningan]], atau tembaga pada [[tongkat golf]] (''club'') untuk [[fairway]] menurunkan pusat gravitasi ''club'' sehingga memudahkan untuk melayangkan bola ke udara;<ref>{{harvnb|Jackson|Summitt|2006|pp=10, 13}}</ref> dan bola golf dengan inti tungsten diklaim memiliki karakteristik layang yang lebih baik.<ref>{{harvnb|Shedd|2002|p=80.5}}; {{harvnb|Kantra|2001|p=10}}</ref> Dalam ''[[fly fishing]]'',{{#tag:ref|''Fly fishing'' adalah teknik memancing dengan menggunakan umpan artifisial yang menyerupai lalat atau serangga| group=n}} umpan lalat memiliki lapisan [[polivinil klorida|PVC]] yang dicampur dengan bubuk tungsten, sehingga mereka tenggelam pada tingkat yang dibutuhkan.<ref>{{harvnb|Spolek|2007|p=239}}</ref> Dalam olahraga lapangan, bola baja yang digunakan dalam event [[lontar martil]] dan [[tolak peluru]] diisi dengan timbal untuk mencapai berat minimum yang dibutuhkan berdasarkan peraturan internasional.<ref>{{harvnb|White|2010|p=139}}</ref> Tungsten digunakan dalam bola lontar martil setidaknya sampai tahun 1980; ukuran bola minimum meningkat pada tahun 1981 untuk menghilangkan kebutuhan akan logam mahal (tiga kali lipat biaya martil lainnya) yang umumnya tidak tersedia di semua negara.<ref>{{harvnb|Dapena|Teves|1982|p=78}}</ref> Martil tungsten sangat padat sehingga mereka menembus terlalu dalam ke rumput.<ref>{{harvnb|Burkett|2010|p=80}}</ref>


Dalam teknik mesin, logam berat digunakan untuk pemberat di kapal,<ref name="Moore 1984 102">{{harvnb|Moore|Ramamoorthy|1984|p=102}}</ref> pesawat terbang,<ref name=NMAB1973>{{harvnb|National Materials Advisory Board|1973|p=58}}</ref> dan kendaraan bermotor;<ref>{{harvnb|Livesey|2012|p=57}}</ref> atau pada [[penyeimbang roda|penyeimbang pada roda]] dan [[crankshaft]],<ref>{{harvnb|VanGelder|2014|pp=354, 801}}</ref> [[giroskop]], dan [[baling-baling]],<ref>{{harvnb|National Materials Advisory Board|1971|pp=35–37}}</ref> serta [[kopling sentrifugal]], dalam situasi yang membutuhkan berat maksimum dalam ruang minimum (misalnya dalam penggerak [[arloji]]).<ref name=NMAB1973 />
Dalam teknik mesin, logam berat digunakan untuk pemberat di kapal,<ref name="Moore 1984 102">{{harvnb|Moore|Ramamoorthy|1984|p=102}}</ref> pesawat terbang,<ref name=NMAB1973>{{harvnb|National Materials Advisory Board|1973|p=58}}</ref> dan kendaraan bermotor;<ref>{{harvnb|Livesey|2012|p=57}}</ref> atau pada [[penyeimbang roda|penyeimbang pada roda]] dan [[crankshaft]],<ref>{{harvnb|VanGelder|2014|pp=354, 801}}</ref> [[giroskop]], dan [[baling-baling]],<ref>{{harvnb|National Materials Advisory Board|1971|pp=35–37}}</ref> serta [[kopling sentrifugal]], dalam situasi yang membutuhkan berat maksimum dalam ruang minimum (misalnya dalam penggerak [[arloji]]).<ref name=NMAB1973 />


{{quote box|width=20%|align=left|bgcolor=cornsilk|quote=Semakin tinggi kerapatan proyektil, semakin efektif daya tembusnya pada pelat baja yang berat;... [[Osmium|Os]], [[iridium|Ir]], [[platinum|Pt]], dan [[rhenium|Re]]&nbsp;... mahal&nbsp;... [[Uranium|U]] menawarkan kombinasi yang menarik antara kepadatan tinggi, biaya terjangkau dan ketangguhan fraktur yang tinggi.|source=AM Russell and KL Lee<br />''Structure–property relations<br />in nonferrous metals'' (2005, p. 16)}}
{{quote box|width=20%|align=left|bgcolor=cornsilk|quote=Semakin tinggi kerapatan proyektil, semakin efektif daya tembusnya pada pelat baja yang berat;... [[Osmium|Os]], [[iridium|Ir]], [[platinum|Pt]], dan [[rhenium|Re]]&nbsp;... mahal&nbsp;... [[Uranium|U]] menawarkan kombinasi yang menarik antara kepadatan tinggi, biaya terjangkau dan ketangguhan fraktur yang tinggi.|source=AM Russell and KL Lee<br />''Structure–property relations<br />in nonferrous metals'' (2005, p. 16)}}
Dalam persenjataan militer, tungsten atau uranium digunakan dalam [[Perisai Chobham#Modul logam berat|pelapisan perisai tempur]]<ref>{{harvnb|Rockhoff|2012|p=314}}</ref> dan [[Penetrator energi kinetik|proyektil pembobol perisai]],<ref>{{harvnb|Russell|Lee|2005|pp=16, 96}}</ref> serta [[senjata nuklir]] untuk meningkatkan efisiensi (dengan [[Reflektor neutron|merefleksikan neutron]] dan sesaat menunda perluasan bahan reaksi).<ref>{{harvnb|Morstein|2005|p=129}}</ref> Pada tahun 1970an, tantalum ditemukan lebih efektif daripada tembaga untuk ''[[:en:shaped charge|shaped charge]]'' dan [[penetrator bentukan ledakan|senjata anti-perisai bentukan ledakan]] ({{lang-en|explosively formed anti-armour weapons}}) karena kerapatannya yang lebih tinggi, yang memungkinkan konsentrasi gaya yang lebih besar, dan deformabilitas yang lebih baik.<ref>{{harvnb|Russell|Lee|2005|pp=218–219}}</ref> [[Logam berat beracun|Logam berat yang kurang beracun]], seperti tembaga, timah, tungsten, dan bismut, dan mungkin juga mangan (dan juga [[boron]], metaloid), telah menggantikan timbal dan antimon dalam [[peluru hijau]] yang digunakan oleh beberapa tentara dan dalam beberapa amunisi tembak-tembakan rekreasi.<ref>{{harvnb|Lach et al.|2015}}; {{harvnb|Di Maio|2016|p=154}}</ref> Keraguan telah diajukan tentang keamanan (atau [[ramah lingkungan|kredensial hijau]]) tungsten.<ref>{{harvnb|Preschel|2005}}; {{harvnb|Guandalini et al.|2011|p=488}}</ref>
Dalam persenjataan militer, tungsten atau uranium digunakan dalam [[Perisai Chobham#Modul logam berat|pelapisan perisai tempur]]<ref>{{harvnb|Rockhoff|2012|p=314}}</ref> dan [[Penetrator energi kinetik|proyektil pembobol perisai]],<ref>{{harvnb|Russell|Lee|2005|pp=16, 96}}</ref> serta [[senjata nuklir]] untuk meningkatkan efisiensi (dengan [[Reflektor neutron|merefleksikan neutron]] dan sesaat menunda perluasan bahan reaksi).<ref>{{harvnb|Morstein|2005|p=129}}</ref> Pada tahun 1970-an, tantalum ditemukan lebih efektif daripada tembaga untuk ''[[:en:shaped charge|shaped charge]]'' dan [[penetrator bentukan ledakan|senjata anti-perisai bentukan ledakan]] ({{lang-en|explosively formed anti-armour weapons}}) karena kerapatannya yang lebih tinggi, yang memungkinkan konsentrasi gaya yang lebih besar, dan deformabilitas yang lebih baik.<ref>{{harvnb|Russell|Lee|2005|pp=218–219}}</ref> [[Logam berat beracun|Logam berat yang kurang beracun]], seperti tembaga, timah, tungsten, dan bismut, dan mungkin juga mangan (dan juga [[boron]], metaloid), telah menggantikan timbal dan antimon dalam [[peluru hijau]] yang digunakan oleh beberapa tentara dan dalam beberapa amunisi tembak-tembakan rekreasi.<ref>{{harvnb|Lach et al.|2015}}; {{harvnb|Di Maio|2016|p=154}}</ref> Keraguan telah diajukan tentang keamanan (atau [[ramah lingkungan|kredensial hijau]]) tungsten.<ref>{{harvnb|Preschel|2005}}; {{harvnb|Guandalini et al.|2011|p=488}}</ref>


Karena bahan yang lebih padat menyerap lebih banyak emisi radioaktif daripada yang ringan, logam berat berguna sebagai [[proteksi radiasi|perisai radiasi]] dan [[kolimator|memusatkan sinar radiasi]] pada [[akselerator partikel linier|akselerator linier]] dan aplikasi [[radioterapi]].<ref>{{harvnb|Scoullos et al.|2001|p=315}}; {{harvnb|Ariel|Barta|Brandon|1973|p=126}}</ref>
Karena bahan yang lebih padat menyerap lebih banyak emisi radioaktif daripada yang ringan, logam berat berguna sebagai [[proteksi radiasi|perisai radiasi]] dan [[kolimator|memusatkan sinar radiasi]] pada [[akselerator partikel linier|akselerator linier]] dan aplikasi [[radioterapi]].<ref>{{harvnb|Scoullos et al.|2001|p=315}}; {{harvnb|Ariel|Barta|Brandon|1973|p=126}}</ref>
Baris 751: Baris 751:


=== Berdasarkan kekuatan atau daya tahan ===
=== Berdasarkan kekuatan atau daya tahan ===
[[Berkas:Statue-de-la-liberte-new-york.jpg|thumb|[[Patung Liberty]]. [[Armatur (seni pahat)|Armatur]] paduan [[baja nirkarat]]<ref>{{harvnb|Wingerson|1986|p=35}}</ref> memberikan kekuatan struktural; kulit [[tembaga]] memberikan ketahanan terhadap korosi.{{#tag:ref|Kulit sebagian besar berubah menjadi hijau karena pembentukan patina pelindung yang terdiri dari [[antlerit]] ({{chem2|Cu|3|(OH)|4|SO|4}}), [[atakamit]] ({{chem2|Cu|4|(OH)|6|Cl|2}}), [[brokantit]] ({{chem2|Cu|4|(OH)|6|SO|4}}), [[tembaga(I) oksida|kupro oksida]] ({{chem2|Cu|2|O}}), dan [[tenorit]] (CuO).<ref>{{harvnb|Matyi| Baboian|1986|p=299}}; {{harvnb| Livingston|1991|pp=1401, 1407}}</ref>|group=n}}|alt=Patung kolosal seorang wanita berjubah yang menggenggam obor di tangan kirinya yang terangkat dan satu tablet di tangannya yang lain]]
[[Berkas:Statue-de-la-liberte-new-york.jpg|jmpl|[[Patung Liberty]]. [[Armatur (seni pahat)|Armatur]] paduan [[baja nirkarat]]<ref>{{harvnb|Wingerson|1986|p=35}}</ref> memberikan kekuatan struktural; kulit [[tembaga]] memberikan ketahanan terhadap korosi.{{#tag:ref|Kulit sebagian besar berubah menjadi hijau karena pembentukan patina pelindung yang terdiri dari [[antlerit]] ({{chem2|Cu|3|(OH)|4|SO|4}}), [[atakamit]] ({{chem2|Cu|4|(OH)|6|Cl|2}}), [[brokantit]] ({{chem2|Cu|4|(OH)|6|SO|4}}), [[tembaga(I) oksida|kupro oksida]] ({{chem2|Cu|2|O}}), dan [[tenorit]] (CuO).<ref>{{harvnb|Matyi| Baboian|1986|p=299}}; {{harvnb| Livingston|1991|pp=1401, 1407}}</ref>|group=n}}|alt=Patung kolosal seorang wanita berjubah yang menggenggam obor di tangan kirinya yang terangkat dan satu tablet di tangannya yang lain]]


Kekuatan atau daya tahan logam berat seperti kromium, besi, nikel, tembaga, seng, molibdenum, timah, tungsten, dan timbal, serta paduannya, membuat mereka berguna untuk pembuatan artefak seperti alat, mesin,<ref>{{harvnb|Casey|1993|p=156}}</ref> [[peralatan rumah tangga]]<ref name="Bradl">{{harvnb|Bradl|2005|p=25}}</ref> perabotan,<ref>{{harvnb|Kumar|Srivastava|Srivastava|1994|p=259}}</ref> pipa,<ref name="Bradl" /> [[Rel|rel kereta]],<ref>{{harvnb|Nzierżanowski|Gawroński|2012|p=42}}</ref> gedung<ref>{{harvnb|Pacheco-Torgal|Jalali|Fucic|2012|pp=283–294; 297–333}}</ref> dan jembatan,<ref>{{harvnb|Venner et al.|2004|p=124}}</ref> mobil,<ref name="Bradl" /> kunci,<ref>{{harvnb|Technical Publications|1958|p=235}}:"Berikut adalah pemotong logam keras yang kasar&nbsp;... untuk memotong&nbsp;... hingga&nbsp;... gembok, kisi baja dan logam berat lainnya."</ref> furnitur,<ref>{{harvnb|Naja|Volesky|2009|p=41}}</ref> kapal,<ref name="Moore 1984 102" /> pesawat terbang,<ref>{{harvnb|Department of the Navy|2009|pp=3.3–13}}</ref> koin<ref>{{harvnb|Rebhandl et al.|2007|p=1729}}</ref> dan perhiasan.<ref>{{harvnb|Greenberg|Patterson|2008|p=239}}</ref> Mereka juga digunakan sebagai aditif paduan untuk meningkatkan sifat logam lainnya.{{#tag:ref|Untuk lantanida, ini adalah satu-satunya penggunaan struktural karena mereka terlalu reaktif, relatif mahal, dan cukup kuat.<ref>{{harvnb|Russell|Lee|2005|pp=437, 441}}</ref>|group=n}} Dari dua lusin unsur, hanya dua yang telah digunakan dalam mata uang monetisasi dunia, karbon dan aluminium, bukan logam berat.<ref>{{harvnb|Roe|Roe|1992}}</ref>{{#tag:ref|Weller<ref>{{harvnb|Weller|1976|p=4}}</ref> mengklasifikasikan [[logam koin]] sebagai [[logam berharga]] (misalnya: perak, emas, platina); logam berat berdaya tahan tinggi (nikel); logam berat berdaya tahan rendah (tembaga, besi, seng, timah, dan timbal); dan [[logam ringan]] (aluminium).|group=n}} Emas, perak, dan platina digunakan dalam perhiasan{{#tag:ref|Emsley<ref>{{harvnb|Emsley|2011|p=208}}</ref> memperkirakan kehilangan global enam ton emas per tahun karena cincin kawin 18 karat perlahan habis.|group=n}} seperti nikel, tembaga, indium, dan kobalt dalam [[emas berwarna]].<ref>{{harvnb|Emsley|2011|p=206}}</ref> [[Perhiasan imitasi]] dan [[Mainan|mainan anak]] mungkin terbuat dari logam berat, pada tingkat yang signifikan, seperti kromium, nikel, kadmium, atau timbal.<ref>{{harvnb|Guney|Zagury|2012|p=1238}}; {{harvnb|Cui et al.|2015|p=77}}</ref>
Kekuatan atau daya tahan logam berat seperti kromium, besi, nikel, tembaga, seng, molibdenum, timah, tungsten, dan timbal, serta paduannya, membuat mereka berguna untuk pembuatan artefak seperti alat, mesin,<ref>{{harvnb|Casey|1993|p=156}}</ref> [[peralatan rumah tangga]]<ref name="Bradl">{{harvnb|Bradl|2005|p=25}}</ref> perabotan,<ref>{{harvnb|Kumar|Srivastava|Srivastava|1994|p=259}}</ref> pipa,<ref name="Bradl" /> [[Rel|rel kereta]],<ref>{{harvnb|Nzierżanowski|Gawroński|2012|p=42}}</ref> gedung<ref>{{harvnb|Pacheco-Torgal|Jalali|Fucic|2012|pp=283–294; 297–333}}</ref> dan jembatan,<ref>{{harvnb|Venner et al.|2004|p=124}}</ref> mobil,<ref name="Bradl" /> kunci,<ref>{{harvnb|Technical Publications|1958|p=235}}:"Berikut adalah pemotong logam keras yang kasar&nbsp;... untuk memotong&nbsp;... hingga&nbsp;... gembok, kisi baja dan logam berat lainnya."</ref> furnitur,<ref>{{harvnb|Naja|Volesky|2009|p=41}}</ref> kapal,<ref name="Moore 1984 102" /> pesawat terbang,<ref>{{harvnb|Department of the Navy|2009|pp=3.3–13}}</ref> koin<ref>{{harvnb|Rebhandl et al.|2007|p=1729}}</ref> dan perhiasan.<ref>{{harvnb|Greenberg|Patterson|2008|p=239}}</ref> Mereka juga digunakan sebagai aditif paduan untuk meningkatkan sifat logam lainnya.{{#tag:ref|Untuk lantanida, ini adalah satu-satunya penggunaan struktural karena mereka terlalu reaktif, relatif mahal, dan cukup kuat.<ref>{{harvnb|Russell|Lee|2005|pp=437, 441}}</ref>|group=n}} Dari dua lusin unsur, hanya dua yang telah digunakan dalam mata uang monetisasi dunia, karbon dan aluminium, bukan logam berat.<ref>{{harvnb|Roe|Roe|1992}}</ref>{{#tag:ref|Weller<ref>{{harvnb|Weller|1976|p=4}}</ref> mengklasifikasikan [[logam koin]] sebagai [[logam berharga]] (misalnya: perak, emas, platina); logam berat berdaya tahan tinggi (nikel); logam berat berdaya tahan rendah (tembaga, besi, seng, timah, dan timbal); dan [[logam ringan]] (aluminium).|group=n}} Emas, perak, dan platina digunakan dalam perhiasan{{#tag:ref|Emsley<ref>{{harvnb|Emsley|2011|p=208}}</ref> memperkirakan kehilangan global enam ton emas per tahun karena cincin kawin 18 karat perlahan habis.|group=n}} seperti nikel, tembaga, indium, dan kobalt dalam [[emas berwarna]].<ref>{{harvnb|Emsley|2011|p=206}}</ref> [[Perhiasan imitasi]] dan [[Mainan|mainan anak]] mungkin terbuat dari logam berat, pada tingkat yang signifikan, seperti kromium, nikel, kadmium, atau timbal.<ref>{{harvnb|Guney|Zagury|2012|p=1238}}; {{harvnb|Cui et al.|2015|p=77}}</ref>
Baris 760: Baris 760:


=== Biologi dan kimia ===
=== Biologi dan kimia ===
[[Berkas:Cerium(IV) oxide.jpg|thumb|left|[[Cerium(IV) oksida]] (sampel yang ditunjukkan di atas) digunakan sebagai [[katalis]] dalam [[oven swaresik]].<ref>{{harvnb|Emsley|2011|p=123}}</ref>|alt=A small colorless saucer holding a pale-yellow powder]]
[[Berkas:Cerium(IV) oxide.jpg|jmpl|kiri|[[Cerium(IV) oksida]] (sampel yang ditunjukkan di atas) digunakan sebagai [[katalis]] dalam [[oven swaresik]].<ref>{{harvnb|Emsley|2011|p=123}}</ref>|alt=A small colorless saucer holding a pale-yellow powder]]


Efek [[biosida]] [[efek oligodinamika|beberapa logam berat]] telah dikenal sejak zaman purba.<ref>{{harvnb|Weber|Rutula|2001|p=415}}</ref> Platina, osmium, tembaga, rutenium, dan logam berat lainnya, termasuk arsenik, digunakan dalam perawatan anti kanker, atau menunjukkan potensi untuk itu.<ref>{{harvnb|Dunn|2009}}; {{harvnb|Bonetti et al.|2009|pp=1, 84, 201}}</ref> Antimon (anti-protozoa), bismut ([[Ulkus peptikum|anti tukak]]), emas ([[artritis|anti artritis]]), dan besi ([[malaria|anti malaria]]), juga penting untuk pengobatan.<ref>{{harvnb|Desoize|2004|p=1529}}</ref> Tembaga, seng, perak, emas, atau raksa digunakan dalam formulasi [[antiseptik]];<ref>{{harvnb|Atlas |1986|p=359}}; {{harvnb|Lima et al.|2013|p=1}}</ref> sejumlah kecil beberapa logam berat digunakan untuk mengendalikan pertumbuhan alga, misalnya, [[menara pendingin]].<ref>{{harvnb|Volesky |1990|p=174}}</ref> Bergantung pada penggunaan yang dimaksudkan sebagai pupuk atau biosida, [[Bahan kimia pertanian|agrokimia]] mungkin mengandung logam berat seperti kromium, kobalt, nikel, tembaga, seng, arsen, kadmium, raksa, atau timbal.<ref>{{harvnb|Nakbanpote|Meesungnoen|Prasad|2016|p=180}}</ref>
Efek [[biosida]] [[efek oligodinamika|beberapa logam berat]] telah dikenal sejak zaman purba.<ref>{{harvnb|Weber|Rutula|2001|p=415}}</ref> Platina, osmium, tembaga, rutenium, dan logam berat lainnya, termasuk arsenik, digunakan dalam perawatan anti kanker, atau menunjukkan potensi untuk itu.<ref>{{harvnb|Dunn|2009}}; {{harvnb|Bonetti et al.|2009|pp=1, 84, 201}}</ref> Antimon (anti-protozoa), bismut ([[Ulkus peptikum|anti tukak]]), emas ([[artritis|anti artritis]]), dan besi ([[malaria|anti malaria]]), juga penting untuk pengobatan.<ref>{{harvnb|Desoize|2004|p=1529}}</ref> Tembaga, seng, perak, emas, atau raksa digunakan dalam formulasi [[antiseptik]];<ref>{{harvnb|Atlas |1986|p=359}}; {{harvnb|Lima et al.|2013|p=1}}</ref> sejumlah kecil beberapa logam berat digunakan untuk mengendalikan pertumbuhan alga, misalnya, [[menara pendingin]].<ref>{{harvnb|Volesky |1990|p=174}}</ref> Bergantung pada penggunaan yang dimaksudkan sebagai pupuk atau biosida, [[Bahan kimia pertanian|agrokimia]] mungkin mengandung logam berat seperti kromium, kobalt, nikel, tembaga, seng, arsen, kadmium, raksa, atau timbal.<ref>{{harvnb|Nakbanpote|Meesungnoen|Prasad|2016|p=180}}</ref>
Baris 768: Baris 768:


=== Pewarnaan dan optik ===
=== Pewarnaan dan optik ===
[[Berkas:Neodym(III)sulfat.JPG|thumb|alt=Small translucent, pink-coloured crystals a bit like the colour of candy floss|Neodimium sulfat ({{chem2|Nd|2|(SO|4|)|3}}), digunakan untuk mewarnai kaca<ref>{{harvnb|McColm|1994|p=215}}</ref>]]
[[Berkas:Neodym(III)sulfat.JPG|jmpl|alt=Small translucent, pink-coloured crystals a bit like the colour of candy floss|Neodimium sulfat ({{chem2|Nd|2|(SO|4|)|3}}), digunakan untuk mewarnai kaca<ref>{{harvnb|McColm|1994|p=215}}</ref>]]


Warna [[kaca]], [[glazur keramik]], [[dampak lingkungan cat|cat]], [[pigmen]], dan [[plastik]] umumnya diproduksi dengan memasukkan logam berat (atau senyawanya) seperti kromium, mangan, kobalt, tembaga, seng, selenium, [[zirkonium]], molibdenum, perak, timah, [[praseodimium]], [[neodimium]], [[erbium]], tungsten, iridium, emas, timbal, atau uranium.<ref>{{harvnb|Emsley|2011|pp=135; 313; 141; 495; 626; 479; 630; 334; 495; 556; 424; 339; 169; 571; 252; 205; 286; 599}}</ref> Tinta tattoo mungkin mengandung logam berat, seperti kromium, kobalt, nikel, dan tembaga.<ref>{{harvnb|Everts|2016}}</ref> Reflektivitas tinggi beberapa logam berat penting dalam konstruksi [[cermin]], termasuk [[instrumen astronomi]] yang presisi. Reflektor lampu bergantung pada pantulan yang sangat baik dari film tipis rhodium.<ref>{{harvnb|Emsley|2011|p=450}}</ref>
Warna [[kaca]], [[glazur keramik]], [[dampak lingkungan cat|cat]], [[pigmen]], dan [[plastik]] umumnya diproduksi dengan memasukkan logam berat (atau senyawanya) seperti kromium, mangan, kobalt, tembaga, seng, selenium, [[zirkonium]], molibdenum, perak, timah, [[praseodimium]], [[neodimium]], [[erbium]], tungsten, iridium, emas, timbal, atau uranium.<ref>{{harvnb|Emsley|2011|pp=135; 313; 141; 495; 626; 479; 630; 334; 495; 556; 424; 339; 169; 571; 252; 205; 286; 599}}</ref> Tinta tattoo mungkin mengandung logam berat, seperti kromium, kobalt, nikel, dan tembaga.<ref>{{harvnb|Everts|2016}}</ref> Reflektivitas tinggi beberapa logam berat penting dalam konstruksi [[cermin]], termasuk [[instrumen astronomi]] yang presisi. Reflektor lampu bergantung pada pantulan yang sangat baik dari film tipis rhodium.<ref>{{harvnb|Emsley|2011|p=450}}</ref>


=== Elektronik, magnet, dan pencahayaan ===
=== Elektronik, magnet, dan pencahayaan ===
[[Berkas:Topaz Solar Farm, California Valley.jpg|thumb|left|[[Topaz Solar Farm]], di selatan California, memiliki 9 juta [[fotovoltaik kadmium telurida|modul fotovoltaik kadmium-tellurium]] seluas 25,6 kilometer persegi (9,5 mil persegi).|alt=A satellite image of what look like semi-regularly spaced swathes of black tiles set in a plain, surrounded by farmland and grass lands]]
[[Berkas:Topaz Solar Farm, California Valley.jpg|jmpl|kiri|[[Topaz Solar Farm]], di selatan California, memiliki 9 juta [[fotovoltaik kadmium telurida|modul fotovoltaik kadmium-tellurium]] seluas 25,6 kilometer persegi (9,5 mil persegi).|alt=A satellite image of what look like semi-regularly spaced swathes of black tiles set in a plain, surrounded by farmland and grass lands]]


Logam berat atau senyawanya dapat ditemukan di [[komponen elektronik]], [[elektroda]], dan [[kabel listrik|kabel]] serta [[panel surya]] di mana mereka dapat digunakan sebagai konduktor, semikonduktor, atau isolator. Bubuk molibdenum digunakan dalam tinta [[papan sirkuit cetak|papan sirkuit]].<ref>{{harvnb|Emsley|2011|p=334}}</ref> Anoda titanium bersalut ruthenium(IV) oksida digunakan dalam industri produksi [[klorin]].<ref>{{harvnb|Emsley|2011|p=459}}</ref> Sistem kelistrikan rumah sebagian besar dihubungkan dengan kawat tembaga karena konduktivitasnya yang baik.<ref>{{harvnb|Moselle|2004|pp=409–410}}</ref> Perak dan emas digunakan dalam perangkat listrik dan elektronik, terutama pada tombol on/off, karena konduktivitas listriknya yang tinggi dan kapasitasnya untuk menahan atau meminimalkan pembentukan kotoran pada permukaannya. <ref>{{harvnb|Russell|Lee|2005|p=323}}</ref> Semikonduktor [[kadmium telurida]] dan [[galium arsenida]] digunakan untuk membuat panel surya. [[Hafnium oksida]], isolator, digunakan sebagai [[pengontrol tegangan]] dalam [[sirkuit terpadu|mikrochip]]; [[tantalum oksida]], isolator lain, digunakan pada [[kapasitor]] dalam [[ponsel]].<ref>{{harvnb|Emsley|2011|p=212}}</ref> Logam berat telah digunakan dalam baterai selama lebih dari 200 tahun, setidaknya sejak [[Alessandro Volta]] menemukan [[tumpukan volta]] tembaga dan peraknya pada tahun 1800.<ref>{{harvnb|Tretkoff |2006}}</ref> [[Prometium]], [[lantanum]], dan raksa adalah contoh lebih lanjut yang ditemukan pada [[baterai atom]], [[baterai nickel-metal hidrida|nickel-metal hidrida]], dan [[baterai arloji]].<ref>{{harvnb|Emsley|2011|pp=428; 276; 326–327}}</ref>
Logam berat atau senyawanya dapat ditemukan di [[komponen elektronik]], [[elektroda]], dan [[kabel listrik|kabel]] serta [[panel surya]] di mana mereka dapat digunakan sebagai konduktor, semikonduktor, atau isolator. Bubuk molibdenum digunakan dalam tinta [[papan sirkuit cetak|papan sirkuit]].<ref>{{harvnb|Emsley|2011|p=334}}</ref> Anoda titanium bersalut ruthenium(IV) oksida digunakan dalam industri produksi [[klorin]].<ref>{{harvnb|Emsley|2011|p=459}}</ref> Sistem kelistrikan rumah sebagian besar dihubungkan dengan kawat tembaga karena konduktivitasnya yang baik.<ref>{{harvnb|Moselle|2004|pp=409–410}}</ref> Perak dan emas digunakan dalam perangkat listrik dan elektronik, terutama pada tombol on/off, karena konduktivitas listriknya yang tinggi dan kapasitasnya untuk menahan atau meminimalkan pembentukan kotoran pada permukaannya.<ref>{{harvnb|Russell|Lee|2005|p=323}}</ref> Semikonduktor [[kadmium telurida]] dan [[galium arsenida]] digunakan untuk membuat panel surya. [[Hafnium oksida]], isolator, digunakan sebagai [[pengontrol tegangan]] dalam [[sirkuit terpadu|mikrochip]]; [[tantalum oksida]], isolator lain, digunakan pada [[kapasitor]] dalam [[ponsel]].<ref>{{harvnb|Emsley|2011|p=212}}</ref> Logam berat telah digunakan dalam baterai selama lebih dari 200 tahun, setidaknya sejak [[Alessandro Volta]] menemukan [[tumpukan volta]] tembaga dan peraknya pada tahun 1800.<ref>{{harvnb|Tretkoff |2006}}</ref> [[Prometium]], [[lantanum]], dan raksa adalah contoh lebih lanjut yang ditemukan pada [[baterai atom]], [[baterai nickel-metal hidrida|nickel-metal hidrida]], dan [[baterai arloji]].<ref>{{harvnb|Emsley|2011|pp=428; 276; 326–327}}</ref>


[[Magnet]] terbuat dari logam berat seperti mangan, besi, kobalt, nikel, niobium, bismut, praseodimium, neodimium, gadolinium, dan [[disprosium]]. Magnet neodimium adalah jenis [[magnet|magnet permanen]] paling kuat yang tersedia secara komersial. Mereka adalah komponen kunci, misalnya kunci pintu mobil, [[starter mesin|starter motor]], [[pompa bahan bakar]], dan [[Jendela daya|power window]].<ref>{{harvnb|Emsley|2011|pp=73; 141; 141; 141; 355; 73; 424; 340; 189; 189}}</ref>
[[Magnet]] terbuat dari logam berat seperti mangan, besi, kobalt, nikel, niobium, bismut, praseodimium, neodimium, gadolinium, dan [[disprosium]]. Magnet neodimium adalah jenis [[magnet|magnet permanen]] paling kuat yang tersedia secara komersial. Mereka adalah komponen kunci, misalnya kunci pintu mobil, [[starter mesin|starter motor]], [[pompa bahan bakar]], dan [[Jendela daya|power window]].<ref>{{harvnb|Emsley|2011|pp=73; 141; 141; 141; 355; 73; 424; 340; 189; 189}}</ref>
Baris 782: Baris 782:


=== Nuklir ===
=== Nuklir ===
[[Berkas:Rotating anode x-ray tube (labeled).jpg|thumb|250 px|Sebuah [[tabung sinar-X]] dengan anoda putar, biasanya paduan [[tungsten]]-[[renium]] pada inti [[molibdenum]] yang didukung dengan [[grafit]]<ref name="Ball">{{harvnb|Ball|Moore|Turner|2008|p=177}}</ref>{{#tag:ref|Elektron yang menumbuk anoda tungsten menghasilkan sinar-X;<ref>{{harvnb|Ball|Moore|Turner|2008|pp=248–249, 255}}</ref> renium memberi ketahanan yang lebih baik kepada tungsten terhadap sengatan termal;<ref>{{harvnb|Russell|Lee|2005|p=238}}</ref> molibdenum dan grafit bertindak sebagai peredam panas. Molybdenum juga memiliki kepadatan hampir setengah dari tungsten sehingga mengurangi berat anoda.<ref name="Ball" />|group=n}}|alt=A large glass bulb. Inside the bulb, at one end, is a fixed spindle. There is an arm attached to the spindle. At the end of the arm is a small protuberance. This is the cathode. At the other end of the bulb is a rotatable wide metal plate attached to a rotor mechanism which protrudes from the end of the bulb.]]
[[Berkas:Rotating anode x-ray tube (labeled).jpg|jmpl|250 px|Sebuah [[tabung sinar-X]] dengan anoda putar, biasanya paduan [[tungsten]]-[[renium]] pada inti [[molibdenum]] yang didukung dengan [[grafit]]<ref name="Ball">{{harvnb|Ball|Moore|Turner|2008|p=177}}</ref>{{#tag:ref|Elektron yang menumbuk anoda tungsten menghasilkan sinar-X;<ref>{{harvnb|Ball|Moore|Turner|2008|pp=248–249, 255}}</ref> renium memberi ketahanan yang lebih baik kepada tungsten terhadap sengatan termal;<ref>{{harvnb|Russell|Lee|2005|p=238}}</ref> molibdenum dan grafit bertindak sebagai peredam panas. Molybdenum juga memiliki kepadatan hampir setengah dari tungsten sehingga mengurangi berat anoda.<ref name="Ball" />|group=n}}|alt=A large glass bulb. Inside the bulb, at one end, is a fixed spindle. There is an arm attached to the spindle. At the end of the arm is a small protuberance. This is the cathode. At the other end of the bulb is a rotatable wide metal plate attached to a rotor mechanism which protrudes from the end of the bulb.]]


Penggunaan ''niché'' logam berat dengan nomor atom tinggi terdapat pada [[pencitraan medis|pencitraan diagnostik]], [[mikroskopi transmisi elektron|mikroskopi elektron]], dan teknik nuklir. Dalam pencitraan diagnostik, logam berat seperti kobalt atau tungsten membentuk bahan anoda yang dijumpai dalam [[tabung sinar-X]].<ref name=Tisza>{{harvnb|Tisza|2001|p=73}}</ref> Dalam mikroskopi elektron, logam berat seperti timbal, emas, paladium, platina, atau uranium digunakan untuk membuat salutan konduktif dan untuk memasukkan kerapatan elektron ke spesimen biologis dengan cara [[pewarnaan]], [[pewarnaan negatif]], atau [[penguapan (deposisi)|deposisi vakum]].<ref>{{harvnb|Chandler|Roberson|2009|pp=47, 367–369, 373}}; {{harvnb|Ismail|Khulbe|Matsuura|2015|p=302}}</ref> Dalam teknik nuklir, inti logam berat seperti kromium, besi, atau seng kadang-kadang ditembakkan pada target logam berat lainnya untuk menghasilkan [[Unsur transuranium#Unsur superberat|unsur superberat]];<ref>{{harvnb|Ebbing|Gammon|2017|p=695}}</ref> logam berat juga digunakan sebagai target [[Spalasi#Spalasi nuklir|spalasi]] untuk produksi [[neutron]]<ref>{{harvnb|Pan|Dai|2015|p=69}}</ref> atau [[radioisotop]] seperti astatine (menggunakan timbal, bismut, thorium, atau uranium dalam kasus terakhir).<ref name=Brown>{{harvnb|Brown|1987|p=48}}</ref>
Penggunaan ''niché'' logam berat dengan nomor atom tinggi terdapat pada [[pencitraan medis|pencitraan diagnostik]], [[mikroskopi transmisi elektron|mikroskopi elektron]], dan teknik nuklir. Dalam pencitraan diagnostik, logam berat seperti kobalt atau tungsten membentuk bahan anoda yang dijumpai dalam [[tabung sinar-X]].<ref name=Tisza>{{harvnb|Tisza|2001|p=73}}</ref> Dalam mikroskopi elektron, logam berat seperti timbal, emas, paladium, platina, atau uranium digunakan untuk membuat salutan konduktif dan untuk memasukkan kerapatan elektron ke spesimen biologis dengan cara [[pewarnaan]], [[pewarnaan negatif]], atau [[penguapan (deposisi)|deposisi vakum]].<ref>{{harvnb|Chandler|Roberson|2009|pp=47, 367–369, 373}}; {{harvnb|Ismail|Khulbe|Matsuura|2015|p=302}}</ref> Dalam teknik nuklir, inti logam berat seperti kromium, besi, atau seng kadang-kadang ditembakkan pada target logam berat lainnya untuk menghasilkan [[Unsur transuranium#Unsur superberat|unsur superberat]];<ref>{{harvnb|Ebbing|Gammon|2017|p=695}}</ref> logam berat juga digunakan sebagai target [[Spalasi#Spalasi nuklir|spalasi]] untuk produksi [[neutron]]<ref>{{harvnb|Pan|Dai|2015|p=69}}</ref> atau [[radioisotop]] seperti astatine (menggunakan timbal, bismut, thorium, atau uranium dalam kasus terakhir).<ref name=Brown>{{harvnb|Brown|1987|p=48}}</ref>
Baris 802: Baris 802:
* {{anchor|{{harvid|Ariel|Barta|Brandon|1973}}}}Ariel E., Barta J. & Brandon D. 1973, "Preparation and properties of heavy metals", ''Powder Metallurgy International'', vol. 5, no. 3, pp.&nbsp;126–129.
* {{anchor|{{harvid|Ariel|Barta|Brandon|1973}}}}Ariel E., Barta J. & Brandon D. 1973, "Preparation and properties of heavy metals", ''Powder Metallurgy International'', vol. 5, no. 3, pp.&nbsp;126–129.
* {{anchor|{{harvid|Atlas |1986}}}}Atlas R. M. 1986, ''Basic and Practical Microbiology'', [[Macmillan Publishers|Macmillan Publishing Company]], New York, ISBN 978-0-02-304350-5.
* {{anchor|{{harvid|Atlas |1986}}}}Atlas R. M. 1986, ''Basic and Practical Microbiology'', [[Macmillan Publishers|Macmillan Publishing Company]], New York, ISBN 978-0-02-304350-5.
* {{anchor|{{harvid|Australian Government|2016}}}}Australian Government 2016, ''[http://www.npi.gov.au/ National Pollutant Inventory]'', Department of the Environment and Energy, accessed 16 August 2016.
* {{anchor|{{harvid|Australian Government|2016}}}}Australian Government 2016, ''[http://www.npi.gov.au/ National Pollutant Inventory] {{Webarchive|url=https://web.archive.org/web/20100328150659/http://www.npi.gov.au/ |date=2010-03-28 }}'', Department of the Environment and Energy, accessed 16 August 2016.
* {{anchor|{{harvid|Baird|Cann|2012}}}}Baird C. & Cann M. 2012, ''Environmental Chemistry'', 5th ed., [[W. H. Freeman and Company]], New York, ISBN 978-1-4292-7704-4.
* {{anchor|{{harvid|Baird|Cann|2012}}}}Baird C. & Cann M. 2012, ''Environmental Chemistry'', 5th ed., [[W. H. Freeman and Company]], New York, ISBN 978-1-4292-7704-4.
* {{anchor|{{harvid|Baldwin|Marshall|1999}}}}Baldwin D. R. & Marshall W. J. 1999, "Heavy metal poisoning and its laboratory investigation", ''[[Annals of Clinical Biochemistry]]'', vol. 36, no. 3, pp.&nbsp;267–300, {{DOI|10.1177/000456329903600301}}.
* {{anchor|{{harvid|Baldwin|Marshall|1999}}}}Baldwin D. R. & Marshall W. J. 1999, "Heavy metal poisoning and its laboratory investigation", ''[[Annals of Clinical Biochemistry]]'', vol. 36, no. 3, pp.&nbsp;267–300, {{DOI|10.1177/000456329903600301}}.
Baris 828: Baris 828:
* {{anchor|{{harvid|Chen|Huang|2006|pp=164–165}}}}Chen J. & Huang K. 2006, "A new technique for extraction of platinum group metals by pressure cyanidation", ''Hydrometallurgy'', vol. 82, nos. 3–4, pp.&nbsp;164–171, {{DOI|10.1016/j.hydromet.2006.03.041}}.
* {{anchor|{{harvid|Chen|Huang|2006|pp=164–165}}}}Chen J. & Huang K. 2006, "A new technique for extraction of platinum group metals by pressure cyanidation", ''Hydrometallurgy'', vol. 82, nos. 3–4, pp.&nbsp;164–171, {{DOI|10.1016/j.hydromet.2006.03.041}}.
* {{anchor|{{harvid|Choptuik|Lehner|Pretorias|2015}}}}Choptuik M. W., Lehner L. & Pretorias F. 2015, "Probing strong-field gravity through numerical simulation", in [[Abhay Ashtekar|A. Ashtekar]], B. K. Berger, J. Isenberg & M. MacCallum (eds), ''General Relativity and Gravitation: A Centennial Perspective'', Cambridge University Press, Cambridge, ISBN 978-1-107-03731-1.
* {{anchor|{{harvid|Choptuik|Lehner|Pretorias|2015}}}}Choptuik M. W., Lehner L. & Pretorias F. 2015, "Probing strong-field gravity through numerical simulation", in [[Abhay Ashtekar|A. Ashtekar]], B. K. Berger, J. Isenberg & M. MacCallum (eds), ''General Relativity and Gravitation: A Centennial Perspective'', Cambridge University Press, Cambridge, ISBN 978-1-107-03731-1.
* {{anchor|{{harvid|Clegg|2014}}}}[[Brian Clegg (writer)|Clegg B]] 2014, "[https://www.chemistryworld.com/podcasts/osmium-tetraoxide/7656.article Osmium tetroxide]", ''[[Chemistry World]]'', accessed 2 September 2016.
* {{anchor|{{harvid|Clegg|2014}}}}[[Brian Clegg (writer)|Clegg B]] 2014, "[https://www.chemistryworld.com/podcasts/osmium-tetraoxide/7656.article Osmium tetroxide] {{Webarchive|url=https://web.archive.org/web/20160915193811/https://www.chemistryworld.com/podcasts/osmium-tetraoxide/7656.article |date=2016-09-15 }}", ''[[Chemistry World]]'', accessed 2 September 2016.
* {{anchor|{{harvid|Close|2015}}}}Close F. 2015, ''Nuclear Physics: A Very Short Introduction'', [[Oxford University Press]], Oxford, ISBN 978-0-19-871863-5.
* {{anchor|{{harvid|Close|2015}}}}Close F. 2015, ''Nuclear Physics: A Very Short Introduction'', [[Oxford University Press]], Oxford, ISBN 978-0-19-871863-5.
* {{anchor|{{harvid|Clugston|Flemming|2000}}}}Clugston M & Flemming R 2000, ''Advanced Chemistry'', Oxford University, Oxford, ISBN 978-0-19-914633-8.
* {{anchor|{{harvid|Clugston|Flemming|2000}}}}Clugston M & Flemming R 2000, ''Advanced Chemistry'', Oxford University, Oxford, ISBN 978-0-19-914633-8.
Baris 840: Baris 840:
* {{anchor|{{harvid|Dapena|Teves1982}}}}Dapena J. & Teves M. A. 1982, "Influence of the diameter of the hammer head on the distance of a hammer throw", ''Research Quarterly for Exercise and Sport'', vol. 53, no. 1, pp.&nbsp;78–81, {{DOI|10.1080/02701367.1982.10605229}}.
* {{anchor|{{harvid|Dapena|Teves1982}}}}Dapena J. & Teves M. A. 1982, "Influence of the diameter of the hammer head on the distance of a hammer throw", ''Research Quarterly for Exercise and Sport'', vol. 53, no. 1, pp.&nbsp;78–81, {{DOI|10.1080/02701367.1982.10605229}}.
* {{anchor|{{harvid|DeZuane|1997}}}}De Zuane J. 1997, ''Handbook of Drinking Water Quality,'' 2nd ed., John Wiley & Sons, New York, ISBN 978-0-471-28789-6.
* {{anchor|{{harvid|DeZuane|1997}}}}De Zuane J. 1997, ''Handbook of Drinking Water Quality,'' 2nd ed., John Wiley & Sons, New York, ISBN 978-0-471-28789-6.
* {{anchor|{{harvid|Department of the Navy|2009}}}}[[Department of the Navy]] 2009, ''[http://www.nmfs.noaa.gov/pr/pdfs/permits/goa_deis.pdf Gulf of Alaska Navy Training Activities: Draft Environmental Impact Statement/Overseas Environmental Impact Statement]'', U.S. Government, accessed 21 August 2016.
* {{anchor|{{harvid|Department of the Navy|2009}}}}[[Department of the Navy]] 2009, ''[http://www.nmfs.noaa.gov/pr/pdfs/permits/goa_deis.pdf Gulf of Alaska Navy Training Activities: Draft Environmental Impact Statement/Overseas Environmental Impact Statement] {{Webarchive|url=https://web.archive.org/web/20160821213418/http://www.nmfs.noaa.gov/pr/pdfs/permits/goa_deis.pdf |date=2016-08-21 }}'', U.S. Government, accessed 21 August 2016.
* {{anchor|{{harvid|Deschlag|2011}}}}Deschlag J. O. 2011, "Nuclear fission", in A. Vértes, S. Nagy, Z. Klencsár, R. G. Lovas, F. Rösch (eds), ''Handbook of Nuclear Chemistry'', 2nd ed., [[Springer Science+Business Media]], Dordrecht, pp.&nbsp;223–280, ISBN 978-1-4419-0719-6.
* {{anchor|{{harvid|Deschlag|2011}}}}Deschlag J. O. 2011, "Nuclear fission", in A. Vértes, S. Nagy, Z. Klencsár, R. G. Lovas, F. Rösch (eds), ''Handbook of Nuclear Chemistry'', 2nd ed., [[Springer Science+Business Media]], Dordrecht, pp.&nbsp;223–280, ISBN 978-1-4419-0719-6.
* {{anchor|{{harvid|Desoize|2004}}}}Desoize B. 2004, "Metals and metal compounds in cancer treatment", ''[[Anticancer Research]]'', vol. 24, no. 3a, pp.&nbsp;1529–1544, {{pmid|15274320}}.
* {{anchor|{{harvid|Desoize|2004}}}}Desoize B. 2004, "Metals and metal compounds in cancer treatment", ''[[Anticancer Research]]'', vol. 24, no. 3a, pp.&nbsp;1529–1544, {{pmid|15274320}}.
Baris 846: Baris 846:
* {{anchor|{{harvid|Di Maio|2001}}}}[[Vincent Di Maio|Di Maio V. J. M.]] 2001, ''Forensic Pathology,'' 2nd ed., CRC Press, Boca Raton, ISBN 0-8493-0072-X.
* {{anchor|{{harvid|Di Maio|2001}}}}[[Vincent Di Maio|Di Maio V. J. M.]] 2001, ''Forensic Pathology,'' 2nd ed., CRC Press, Boca Raton, ISBN 0-8493-0072-X.
* {{anchor|{{harvid|Di Maio|2016}}}}[[Vincent Di Maio|Di Maio V. J. M.]] 2016, ''Gunshot Wounds: Practical Aspects of Firearms, Ballistics, and Forensic Techniques'', 3rd ed., [[CRC Press]], Boca Raton, Florida, ISBN 978-1-4987-2570-5.
* {{anchor|{{harvid|Di Maio|2016}}}}[[Vincent Di Maio|Di Maio V. J. M.]] 2016, ''Gunshot Wounds: Practical Aspects of Firearms, Ballistics, and Forensic Techniques'', 3rd ed., [[CRC Press]], Boca Raton, Florida, ISBN 978-1-4987-2570-5.
* {{anchor|{{harvid|Duffus|2002}}}}[http://www.duffus.com/jhduffus1940.htm Duffus J. H.] 2002, " [http://www.iupac.org/publications/pac/2002/pdf/7405x0793.pdf 'Heavy metals'—A meaningless term?"], ''[[Pure and Applied Chemistry]]'', vol. 74, no. 5, pp.&nbsp;793–807, {{DOI|10.1351/pac200274050793}}.
* {{anchor|{{harvid|Duffus|2002}}}}[http://www.duffus.com/jhduffus1940.htm Duffus J. H.] {{Webarchive|url=https://web.archive.org/web/20211230084623/http://www.duffus.com/jhduffus1940.htm |date=2021-12-30 }} 2002, " [http://www.iupac.org/publications/pac/2002/pdf/7405x0793.pdf 'Heavy metals'—A meaningless term?"] {{Webarchive|url=https://web.archive.org/web/20170809225056/http://www.iupac.org/publications/pac/2002/pdf/7405x0793.pdf |date=2017-08-09 }}, ''[[Pure and Applied Chemistry]]'', vol. 74, no. 5, pp.&nbsp;793–807, {{DOI|10.1351/pac200274050793}}.
* {{anchor|{{harvid|Dunn|2009}}}}Dunn P. 2009, [http://www2.warwick.ac.uk/newsandevents/pressreleases/unusual_metals_could/ ''Unusual metals could forge new cancer drugs''], University of Warwick, accessed 23 March 2016.
* {{anchor|{{harvid|Dunn|2009}}}}Dunn P. 2009, [http://www2.warwick.ac.uk/newsandevents/pressreleases/unusual_metals_could/ ''Unusual metals could forge new cancer drugs''] {{Webarchive|url=https://web.archive.org/web/20160404154621/http://www2.warwick.ac.uk/newsandevents/pressreleases/unusual_metals_could/ |date=2016-04-04 }}, University of Warwick, accessed 23 March 2016.
* {{anchor|{{harvid|Ebbing|Gammon|2017}}}}Ebbing D. D. & Gammon S. D. 2017, ''General Chemistry'', 11th ed., [[Cengage Learning]], Boston, ISBN 978-1-305-58034-3.
* {{anchor|{{harvid|Ebbing|Gammon|2017}}}}Ebbing D. D. & Gammon S. D. 2017, ''General Chemistry'', 11th ed., [[Cengage Learning]], Boston, ISBN 978-1-305-58034-3.
* {{anchor|{{harvid|Edelstein et al.|2010}}}}Edelstein N. M., Fuger J., Katz J. L. & Morss L. R. 2010, "Summary and comparison of properties of the actinde and transactinide elements," in L. R. Morss, N. M. Edelstein & J. Fuger (eds), ''The Chemistry of the Actinide and Transactinide Elements'', 4th ed., vol. 1–6, [[Springer Publishing|Springer]], Dordrecht, pp.&nbsp;1753–1835, ISBN 978-94-007-0210-3.
* {{anchor|{{harvid|Edelstein et al.|2010}}}}Edelstein N. M., Fuger J., Katz J. L. & Morss L. R. 2010, "Summary and comparison of properties of the actinde and transactinide elements," in L. R. Morss, N. M. Edelstein & J. Fuger (eds), ''The Chemistry of the Actinide and Transactinide Elements'', 4th ed., vol. 1–6, [[Springer Publishing|Springer]], Dordrecht, pp.&nbsp;1753–1835, ISBN 978-94-007-0210-3.
* {{anchor|{{harvid|Eisler|1993}}}}Eisler R. 1993, ''[http://www.pwrc.usgs.gov/eisler/CHR_26_Zinc.pdf Zinc Hazards to Fish, Wildlife, and Invertebrates: A Synoptic Review]'', Biological Report 10, [[United States Department of the Interior|U. S. Department of the Interior]], Laurel, Maryland, accessed 2 September 2016.
* {{anchor|{{harvid|Eisler|1993}}}}Eisler R. 1993, ''[http://www.pwrc.usgs.gov/eisler/CHR_26_Zinc.pdf Zinc Hazards to Fish, Wildlife, and Invertebrates: A Synoptic Review] {{Webarchive|url=https://web.archive.org/web/20161221081111/https://www.pwrc.usgs.gov/eisler/CHR_26_Zinc.pdf |date=2016-12-21 }}'', Biological Report 10, [[United States Department of the Interior|U. S. Department of the Interior]], Laurel, Maryland, accessed 2 September 2016.
* {{anchor|{{harvid|Elliot|1946}}}}Elliott S. B. 1946, ''The Alkaline-earth and Heavy-metal Soaps, '' Reinhold Publishing Corporation, New York.
* {{anchor|{{harvid|Elliot|1946}}}}Elliott S. B. 1946, ''The Alkaline-earth and Heavy-metal Soaps, '' Reinhold Publishing Corporation, New York.
* {{anchor|{{harvid|Emsley|2011}}}}[[John Emsley|Emsley J.]] 2011, ''Nature's Building Blocks'', new edition, Oxford University Press, Oxford, ISBN 978-0-19-960563-7.
* {{anchor|{{harvid|Emsley|2011}}}}[[John Emsley|Emsley J.]] 2011, ''Nature's Building Blocks'', new edition, Oxford University Press, Oxford, ISBN 978-0-19-960563-7.
* {{anchor|{{harvid|Everts|2016}}}}Everts S. 2016, "[http://cen.acs.org/articles/94/i33/chemicals-tattoo.html?utm_source=Newsletter&utm_medium=Newsletter&utm_campaign=CEN What chemicals are in your tattoo]", ''[[Chemical & Engineering News]]'', vol. 94, no. 33, pp.&nbsp;24–26.
* {{anchor|{{harvid|Everts|2016}}}}Everts S. 2016, "[http://cen.acs.org/articles/94/i33/chemicals-tattoo.html?utm_source=Newsletter&utm_medium=Newsletter&utm_campaign=CEN What chemicals are in your tattoo] {{Webarchive|url=https://web.archive.org/web/20160812235215/http://cen.acs.org/articles/94/i33/chemicals-tattoo.html?utm_source=Newsletter&utm_medium=Newsletter&utm_campaign=CEN |date=2016-08-12 }}", ''[[Chemical & Engineering News]]'', vol. 94, no. 33, pp.&nbsp;24–26.
* {{anchor|{{harvid|Fournier|1976}}}}Fournier J. 1976, "Bonding and the electronic structure of the actinide metals," ''[[Journal of Physics and Chemistry of Solids]]'', vol 37, no. 2, pp.&nbsp;235–244, {{DOI|10.1016/0022-3697(76)90167-0}}.
* {{anchor|{{harvid|Fournier|1976}}}}Fournier J. 1976, "Bonding and the electronic structure of the actinide metals," ''[[Journal of Physics and Chemistry of Solids]]'', vol 37, no. 2, pp.&nbsp;235–244, {{DOI|10.1016/0022-3697(76)90167-0}}.
* {{anchor|{{harvid|Frick|2000}}}}Frick J. P. (ed.) 2000, ''Woldman's Engineering Alloys'', 9th ed., [[ASM International (society)|ASM International]], Materials Park, Ohio, ISBN 978-0-87170-691-1.
* {{anchor|{{harvid|Frick|2000}}}}Frick J. P. (ed.) 2000, ''Woldman's Engineering Alloys'', 9th ed., [[ASM International (society)|ASM International]], Materials Park, Ohio, ISBN 978-0-87170-691-1.
Baris 867: Baris 867:
* {{anchor|{{harvid|Guandalini et al.|2011}}}}Guandalini G. S., Zhang L., Fornero E., Centeno J. A., Mokashi V. P., Ortiz P. A., Stockelman M. D., Osterburg A. R. & Chapman G. G. 2011, "Tissue distribution of tungsten in mice following oral exposure to sodium tungstate," ''[[Chemical Research in Toxicology]]'', vol. 24, no. 4, pp 488–493, {{DOI|10.1021/tx200011k}}.
* {{anchor|{{harvid|Guandalini et al.|2011}}}}Guandalini G. S., Zhang L., Fornero E., Centeno J. A., Mokashi V. P., Ortiz P. A., Stockelman M. D., Osterburg A. R. & Chapman G. G. 2011, "Tissue distribution of tungsten in mice following oral exposure to sodium tungstate," ''[[Chemical Research in Toxicology]]'', vol. 24, no. 4, pp 488–493, {{DOI|10.1021/tx200011k}}.
* {{anchor|{{harvid|Guney|Zagury|2012}}}}Guney M. & Zagury G. J. 2012, "Heavy metals in toys and low-cost jewelry: Critical review of U.S. and Canadian legislations and recommendations for testing", ''[[Environmental Science & Technology]]'', vol. 48, pp.&nbsp;1238–1246, {{DOI|10.1021/es4036122}}.
* {{anchor|{{harvid|Guney|Zagury|2012}}}}Guney M. & Zagury G. J. 2012, "Heavy metals in toys and low-cost jewelry: Critical review of U.S. and Canadian legislations and recommendations for testing", ''[[Environmental Science & Technology]]'', vol. 48, pp.&nbsp;1238–1246, {{DOI|10.1021/es4036122}}.
* {{anchor|{{harvid|Habashi|2009}}}}Habashi F. 2009, "[http://www.scs.illinois.edu/~mainzv/HIST/bulletin_open_access/v34-1/v34-1%20p30-31.pdf Gmelin and his Handbuch"], ''[[Bulletin for the History of Chemistry]]'', vol. 34, no. 1, pp.&nbsp;30–1.
* {{anchor|{{harvid|Habashi|2009}}}}Habashi F. 2009, "[http://www.scs.illinois.edu/~mainzv/HIST/bulletin_open_access/v34-1/v34-1%20p30-31.pdf Gmelin and his Handbuch"] {{Webarchive|url=https://web.archive.org/web/20160415132309/http://www.scs.illinois.edu/~mainzv/HIST/bulletin_open_access/v34-1/v34-1%20p30-31.pdf |date=2016-04-15 }}, ''[[Bulletin for the History of Chemistry]]'', vol. 34, no. 1, pp.&nbsp;30–1.
* {{anchor|{{harvid|Hadhazy|2016}}}}Hadhazy A. 2016, "[http://www.kavlifoundation.org/science-spotlights/cosmic-heavy-metals#.V4MEDleO7OY Galactic 'gold mine' explains the origin of nature's heaviest elements]", ''Science Spotlights'', 10 May 2016, accessed 11 July 2016.
* {{anchor|{{harvid|Hadhazy|2016}}}}Hadhazy A. 2016, "[http://www.kavlifoundation.org/science-spotlights/cosmic-heavy-metals#.V4MEDleO7OY Galactic 'gold mine' explains the origin of nature's heaviest elements] {{Webarchive|url=https://web.archive.org/web/20160524101329/http://www.kavlifoundation.org/science-spotlights/cosmic-heavy-metals#.V4MEDleO7OY |date=2016-05-24 }}", ''Science Spotlights'', 10 May 2016, accessed 11 July 2016.
* {{anchor|{{harvid|Hartmann|2005}}}}[[William Kenneth Hartmann|Hartmann W. K.]] 2005, ''Moons & Planets'', 5th ed., [[Thomson Brooks/Cole]], Belmont, California, ISBN 978-0-534-49393-6.
* {{anchor|{{harvid|Hartmann|2005}}}}[[William Kenneth Hartmann|Hartmann W. K.]] 2005, ''Moons & Planets'', 5th ed., [[Thomson Brooks/Cole]], Belmont, California, ISBN 978-0-534-49393-6.
* {{anchor|{{harvid|Harvey|Handley|Taylor|2015}}}}Harvey P. J., Handley H. K. & Taylor M. P. 2015, "Identification of the sources of metal (lead) contamination in drinking waters in north-eastern Tasmania using lead isotopic compositions," ''Environmental Science and Pollution Research'', vol. 22, no. 16, pp.&nbsp;12276–12288, {{DOI|10.1007/s11356-015-4349-2}} PMID 25895456.
* {{anchor|{{harvid|Harvey|Handley|Taylor|2015}}}}Harvey P. J., Handley H. K. & Taylor M. P. 2015, "Identification of the sources of metal (lead) contamination in drinking waters in north-eastern Tasmania using lead isotopic compositions," ''Environmental Science and Pollution Research'', vol. 22, no. 16, pp.&nbsp;12276–12288, {{DOI|10.1007/s11356-015-4349-2}} PMID 25895456.
Baris 875: Baris 875:
* {{anchor|{{harvid|Haynes|2015}}}}Haynes W. M. 2015, ''CRC Handbook of Chemistry and Physics'', 96th ed., CRC Press, Boca Raton, Florida, ISBN 978-1-4822-6097-7.
* {{anchor|{{harvid|Haynes|2015}}}}Haynes W. M. 2015, ''CRC Handbook of Chemistry and Physics'', 96th ed., CRC Press, Boca Raton, Florida, ISBN 978-1-4822-6097-7.
* {{anchor|{{harvid|Hendrickson|2016}}}}Hendrickson D. J. 2916, "Effects of early experience on brain and body", in D. Alicata, N. N. Jacobs, A. Guerrero and M. Piasecki (eds), ''Problem-based Behavioural Science and Psychiatry'' 2nd ed., Springer, Cham, pp.&nbsp;33–54, ISBN 978-3-319-23669-8.
* {{anchor|{{harvid|Hendrickson|2016}}}}Hendrickson D. J. 2916, "Effects of early experience on brain and body", in D. Alicata, N. N. Jacobs, A. Guerrero and M. Piasecki (eds), ''Problem-based Behavioural Science and Psychiatry'' 2nd ed., Springer, Cham, pp.&nbsp;33–54, ISBN 978-3-319-23669-8.
* {{anchor|{{harvid|Hermann|Hoffmann|Ashcroft|2013}}}}Hermann A., [[Roald Hoffmann|Hoffmann R.]] & [[Neil Ashcroft|Ashcroft N. W.]] 2013, "[http://www.roaldhoffmann.com/sites/all/files/581.pdf Condensed astatine: Monatomic and metallic]", ''[[Physical Review Letters]]'', vol. 111, pp.&nbsp;11604–1−11604-5, {{DOI|10.1103/PhysRevLett.111.116404}}.
* {{anchor|{{harvid|Hermann|Hoffmann|Ashcroft|2013}}}}Hermann A., [[Roald Hoffmann|Hoffmann R.]] & [[Neil Ashcroft|Ashcroft N. W.]] 2013, "[http://www.roaldhoffmann.com/sites/all/files/581.pdf Condensed astatine: Monatomic and metallic] {{Webarchive|url=https://web.archive.org/web/20160316093932/http://www.roaldhoffmann.com/sites/all/files/581.pdf |date=2016-03-16 }}", ''[[Physical Review Letters]]'', vol. 111, pp.&nbsp;11604–1−11604-5, {{DOI|10.1103/PhysRevLett.111.116404}}.
* {{anchor|{{harvid|Herron|2000}}}}Herron N. 2000, "Cadmium compounds," in ''Kirk-Othmer Encyclopedia of Chemical Technology'', vol. 4, John Wiley & Sons, New York, pp.&nbsp;507–523, ISBN 978-0-471-23896-6.
* {{anchor|{{harvid|Herron|2000}}}}Herron N. 2000, "Cadmium compounds," in ''Kirk-Othmer Encyclopedia of Chemical Technology'', vol. 4, John Wiley & Sons, New York, pp.&nbsp;507–523, ISBN 978-0-471-23896-6.
* {{anchor|{{harvid|Hoffman|Lee|Pershina|2011}}}}Hoffman D. C., Lee D. M. & Pershina V. 2011, "Transactinide elements and future elements," in L. R. Morss, N. Edelstein, J. Fuger & J. J. Katz (eds), ''The Chemistry of the Actinide and Transactinide Elements'', 4th ed., vol. 3, Springer, Dordrecht, pp.&nbsp;1652–1752, ISBN 978-94-007-0210-3.
* {{anchor|{{harvid|Hoffman|Lee|Pershina|2011}}}}Hoffman D. C., Lee D. M. & Pershina V. 2011, "Transactinide elements and future elements," in L. R. Morss, N. Edelstein, J. Fuger & J. J. Katz (eds), ''The Chemistry of the Actinide and Transactinide Elements'', 4th ed., vol. 3, Springer, Dordrecht, pp.&nbsp;1652–1752, ISBN 978-94-007-0210-3.
* {{anchor|{{harvid|Hofmann|2002}}}}Hofmann S. 2002, ''On Beyond Uranium: Journey to the End of the Periodic Table'', [[Taylor & Francis]], London, ISBN 978-0-415-28495-0.
* {{anchor|{{harvid|Hofmann|2002}}}}Hofmann S. 2002, ''On Beyond Uranium: Journey to the End of the Periodic Table'', [[Taylor & Francis]], London, ISBN 978-0-415-28495-0.
* {{anchor|{{harvid|Housecroft|2008}}}}Housecroft J. E. 2008, ''Inorganic Chemistry'', [[Elsevier]], Burlington, Massachusetts, ISBN 978-0-12-356786-4.
* {{anchor|{{harvid|Housecroft|2008}}}}Housecroft J. E. 2008, ''Inorganic Chemistry'', [[Elsevier]], Burlington, Massachusetts, ISBN 978-0-12-356786-4.
* {{anchor|{{harvid|Howell et al.|2012}}}}Howell N., Lavers J., Paterson D., Garrett R. & Banati R. 2012, ''[http://www.ansto.gov.au/AboutANSTO/MediaCentre/News/ACS013097#sthash.wIvPum6r.dpuf Trace metal distribution in feathers from migratory, pelagic birds]'', [[Australian Nuclear Science and Technology Organisation]], accessed 3 May 2014.
* {{anchor|{{harvid|Howell et al.|2012}}}}Howell N., Lavers J., Paterson D., Garrett R. & Banati R. 2012, ''[http://www.ansto.gov.au/AboutANSTO/MediaCentre/News/ACS013097#sthash.wIvPum6r.dpuf Trace metal distribution in feathers from migratory, pelagic birds] {{Webarchive|url=https://web.archive.org/web/20160616192336/http://www.ansto.gov.au/AboutANSTO/MediaCentre/News/ACS013097#sthash.wIvPum6r.dpuf |date=2016-06-16 }}'', [[Australian Nuclear Science and Technology Organisation]], accessed 3 May 2014.
* {{anchor|{{harvid|Hübner|Astin|Herbert|2010}}}}Hübner R., Astin K. B. & Herbert R. J. H. 2010, " 'Heavy metal'—time to move on from semantics to pragmatics?", ''[[Journal of Environmental Monitoring]]'', vol. 12, pp.&nbsp;1511–1514, {{DOI|10.1039/C0EM00056F}}.
* {{anchor|{{harvid|Hübner|Astin|Herbert|2010}}}}Hübner R., Astin K. B. & Herbert R. J. H. 2010, " 'Heavy metal'—time to move on from semantics to pragmatics?", ''[[Journal of Environmental Monitoring]]'', vol. 12, pp.&nbsp;1511–1514, {{DOI|10.1039/C0EM00056F}}.
* {{anchor|{{harvid|Ikehata et al.|2015}}}}Ikehata K., Jin Y., Maleky N. & Lin A. 2015, "Heavy metal pollution in water resources in China—Occurrence and public health implications", in S. K. Sharma (ed.), ''Heavy Metals in Water: Presence, Removal and Safety,'' [[Royal Society of Chemistry]], Cambridge, pp.&nbsp;141–167, ISBN 978-1-84973-885-9.
* {{anchor|{{harvid|Ikehata et al.|2015}}}}Ikehata K., Jin Y., Maleky N. & Lin A. 2015, "Heavy metal pollution in water resources in China—Occurrence and public health implications", in S. K. Sharma (ed.), ''Heavy Metals in Water: Presence, Removal and Safety,'' [[Royal Society of Chemistry]], Cambridge, pp.&nbsp;141–167, ISBN 978-1-84973-885-9.
* {{anchor|{{harvid|International Antimony Association|2016}}}}International Antimony Association 2016, ''[http://www.antimony.com/en/antimony-compounds.aspx Antimony compounds]'', accessed 2 September 2016.
* {{anchor|{{harvid|International Antimony Association|2016}}}}International Antimony Association 2016, ''[http://www.antimony.com/en/antimony-compounds.aspx Antimony compounds] {{Webarchive|url=https://web.archive.org/web/20160912005613/http://www.antimony.com/en/antimony-compounds.aspx |date=2016-09-12 }}'', accessed 2 September 2016.
* {{anchor|{{harvid|International Platinum Group Metals Association|n.d.
* {{anchor|{{harvid|International Platinum Group Metals Association|n.d.
}}}}International Platinum Group Metals Association n.d., ''[http://ipa-news.com/assets/sustainability/Primary%20Production%20Fact%20Sheet_LR.pdf?PHPSESSID=8f924aa0e30f81ba7fe97c7449665b58 The Primary Production of Platinum Group Metals (PGMs)]'', accessed 4 September 2016.
}}}}International Platinum Group Metals Association n.d., ''[http://ipa-news.com/assets/sustainability/Primary%20Production%20Fact%20Sheet_LR.pdf?PHPSESSID=8f924aa0e30f81ba7fe97c7449665b58 The Primary Production of Platinum Group Metals (PGMs)] {{Webarchive|url=https://web.archive.org/web/20160804175359/http://ipa-news.com/assets/sustainability/Primary%20Production%20Fact%20Sheet_LR.pdf?PHPSESSID=8f924aa0e30f81ba7fe97c7449665b58 |date=2016-08-04 }}'', accessed 4 September 2016.
* {{anchor|{{harvid|Ismail|Khulbe|Matsuura|2015}}}}Ismail A. F., Khulbe K. & Matsuura T. 2015, ''Gas Separation Membranes: Polymeric and Inorganic'', Springer, Cham, Switzerland, ISBN 978-3-319-01095-3.
* {{anchor|{{harvid|Ismail|Khulbe|Matsuura|2015}}}}Ismail A. F., Khulbe K. & Matsuura T. 2015, ''Gas Separation Membranes: Polymeric and Inorganic'', Springer, Cham, Switzerland, ISBN 978-3-319-01095-3.
* {{anchor|{{harvid|IUPAC|2016}}}}[[IUPAC]] 2016, "[https://iupac.org/iupac-is-naming-the-four-new-elements-nihonium-moscovium-tennessine-and-oganesson/ IUPAC is naming the four new elements nihonium, moscovium, tennessine, and oganesson]" accessed 27 August 2016.
* {{anchor|{{harvid|IUPAC|2016}}}}[[IUPAC]] 2016, "[https://iupac.org/iupac-is-naming-the-four-new-elements-nihonium-moscovium-tennessine-and-oganesson/ IUPAC is naming the four new elements nihonium, moscovium, tennessine, and oganesson] {{Webarchive|url=https://web.archive.org/web/20180927125046/http://iupac.org/iupac-is-naming-the-four-new-elements-nihonium-moscovium-tennessine-and-oganesson/ |date=2018-09-27 }}" accessed 27 August 2016.
* {{anchor|{{harvid|Iyengar|1998}}}}Iyengar G. V. 1998, "Reevaluation of the trace element content in Reference Man", ''Radiation Physics and Chemistry,'' vol. 51, nos 4–6, pp.&nbsp;545–560, {{doi|10.1016/S0969-806X(97)00202-8}}
* {{anchor|{{harvid|Iyengar|1998}}}}Iyengar G. V. 1998, "Reevaluation of the trace element content in Reference Man", ''Radiation Physics and Chemistry,'' vol. 51, nos 4–6, pp.&nbsp;545–560, {{doi|10.1016/S0969-806X(97)00202-8}}
* {{anchor|{{harvid|Jackson|Summitt|2006}}}}Jackson J. & Summitt J. 2006, ''The Modern Guide to Golf Clubmaking: The Principles and Techniques of Component Golf Club Assembly and Alteration'', 5th ed., Hireko Trading Company, City of Industry, California, ISBN 978-0-9619413-0-7.
* {{anchor|{{harvid|Jackson|Summitt|2006}}}}Jackson J. & Summitt J. 2006, ''The Modern Guide to Golf Clubmaking: The Principles and Techniques of Component Golf Club Assembly and Alteration'', 5th ed., Hireko Trading Company, City of Industry, California, ISBN 978-0-9619413-0-7.
Baris 919: Baris 919:
* {{anchor|{{harvid|Magill|1992}}}}Magill F. N. I (ed.) 1992, ''Magill's Survey of Science'', Physical Science series, vol. 3, [[Salem Press]], Pasadena, ISBN 978-0-89356-621-0.
* {{anchor|{{harvid|Magill|1992}}}}Magill F. N. I (ed.) 1992, ''Magill's Survey of Science'', Physical Science series, vol. 3, [[Salem Press]], Pasadena, ISBN 978-0-89356-621-0.
* {{anchor|{{harvid|Martin|Coughtrey|1982}}}}Martin M. H. & Coughtrey P. J. 1982, ''Biological Monitoring of Heavy Metal Pollution'', Applied Science Publishers, London, ISBN 978-0-85334-136-9.
* {{anchor|{{harvid|Martin|Coughtrey|1982}}}}Martin M. H. & Coughtrey P. J. 1982, ''Biological Monitoring of Heavy Metal Pollution'', Applied Science Publishers, London, ISBN 978-0-85334-136-9.
* {{anchor|{{harvid|Massarani|2015}}}}Massarani M. 2015, "[http://www.rsc.org/chemistryworld/2015/11/brazil-mine-disaster-dam-collapse Brazilian mine disaster releases dangerous metals]," ''Chemistry World'', November 2015, accessed 16 April 2016.
* {{anchor|{{harvid|Massarani|2015}}}}Massarani M. 2015, "[http://www.rsc.org/chemistryworld/2015/11/brazil-mine-disaster-dam-collapse Brazilian mine disaster releases dangerous metals] {{Webarchive|url=https://web.archive.org/web/20160325224935/http://www.rsc.org/chemistryworld/2015/11/brazil-mine-disaster-dam-collapse |date=2016-03-25 }}," ''Chemistry World'', November 2015, accessed 16 April 2016.
* {{anchor|{{harvid|Masters|1981}}}}Masters C. 1981, ''Homogenous Transition-metal Catalysis: A Gentle Art'', Chapman and Hall, London, ISBN 978-0-412-22110-1.
* {{anchor|{{harvid|Masters|1981}}}}Masters C. 1981, ''Homogenous Transition-metal Catalysis: A Gentle Art'', Chapman and Hall, London, ISBN 978-0-412-22110-1.
* {{anchor|{{harvid|Matyi|Baboian|1986}}}}Matyi R. J. & Baboian R. 1986, "An X-ray Diffraction Analysis of the Patina of the Statue of Liberty", ''Powder Diffraction,'' vol. 1, no. 4, pp.&nbsp;299–304, {{DOI|10.1017/S0885715600011970}}.
* {{anchor|{{harvid|Matyi|Baboian|1986}}}}Matyi R. J. & Baboian R. 1986, "An X-ray Diffraction Analysis of the Patina of the Statue of Liberty", ''Powder Diffraction,'' vol. 1, no. 4, pp.&nbsp;299–304, {{DOI|10.1017/S0885715600011970}}.
Baris 936: Baris 936:
* {{anchor|{{harvid|National Materials Advisory Board|1971}}}}National Materials Advisory Board 1971, ''Trends in the Use of Depleted Uranium'', National Academy of Sciences – National Academy of Engineering, Washington DC.
* {{anchor|{{harvid|National Materials Advisory Board|1971}}}}National Materials Advisory Board 1971, ''Trends in the Use of Depleted Uranium'', National Academy of Sciences – National Academy of Engineering, Washington DC.
* {{anchor|{{harvid|National Materials Advisory Board|1973}}}}National Materials Advisory Board 1973, ''Trends in Usage of Tungsten'', [[National Academy of Sciences]] – [[National Academy of Engineering]], Washington DC.
* {{anchor|{{harvid|National Materials Advisory Board|1973}}}}National Materials Advisory Board 1973, ''Trends in Usage of Tungsten'', [[National Academy of Sciences]] – [[National Academy of Engineering]], Washington DC.
* {{anchor|{{harvid|National Organization for Rare Disorders|2015}}}}[[National Organization for Rare Disorders]] 2015, ''[http://rarediseases.org/rare-diseases/heavy-metal-poisoning/ Heavy metal poisoning]'', accessed 3 March 2016.
* {{anchor|{{harvid|National Organization for Rare Disorders|2015}}}}[[National Organization for Rare Disorders]] 2015, ''[http://rarediseases.org/rare-diseases/heavy-metal-poisoning/ Heavy metal poisoning] {{Webarchive|url=https://web.archive.org/web/20150614011710/http://rarediseases.org/rare-diseases/heavy-metal-poisoning/ |date=2015-06-14 }}'', accessed 3 March 2016.
* {{anchor|{{harvid|Natural Resources Canada|2015}}}}Natural Resources Canada 2015, "[http://www.geomag.nrcan.gc.ca/mag_fld/fld-en.php Generation of the Earth's magnetic field]", accessed 30 August 2016.
* {{anchor|{{harvid|Natural Resources Canada|2015}}}}Natural Resources Canada 2015, "[http://www.geomag.nrcan.gc.ca/mag_fld/fld-en.php Generation of the Earth's magnetic field] {{Webarchive|url=https://web.archive.org/web/20160823123513/http://www.geomag.nrcan.gc.ca/mag_fld/fld-en.php |date=2016-08-23 }}", accessed 30 August 2016.
* {{anchor|{{harvid|Nieboer|Richardson|1978}}}}Nieboer E. & Richardson D. 1978, "Lichens and 'heavy metals'&nbsp;", ''International Lichenology Newsletter'', vol. 11, no. 1, pp.&nbsp;1–3.
* {{anchor|{{harvid|Nieboer|Richardson|1978}}}}Nieboer E. & Richardson D. 1978, "Lichens and 'heavy metals'&nbsp;", ''International Lichenology Newsletter'', vol. 11, no. 1, pp.&nbsp;1–3.
* {{anchor|{{harvid|Nieboer|Richardson|1980}}}}Nieboer E. & Richardson D. H. S. 1980, "The replacement of the nondescript term 'heavy metals' by a biologically and chemically significant classification of metal ions", ''[[Environmental Pollution (journal)|Environmental Pollution]] Series B, Chemical and Physical'', vol. 1, no. 1, pp.&nbsp;3–26, {{DOI|10.1016/0143-148X(80)90017-8}}.
* {{anchor|{{harvid|Nieboer|Richardson|1980}}}}Nieboer E. & Richardson D. H. S. 1980, "The replacement of the nondescript term 'heavy metals' by a biologically and chemically significant classification of metal ions", ''[[Environmental Pollution (journal)|Environmental Pollution]] Series B, Chemical and Physical'', vol. 1, no. 1, pp.&nbsp;3–26, {{DOI|10.1016/0143-148X(80)90017-8}}.
* {{anchor|{{harvid|Nzierżanowski|Gawroński|2012}}}}Nzierżanowski K. & Gawroński S. W. 2012, "[http://journal.young-scientists.eu/index.php/isuues/file/78-heavy-metal-concentration-in-plants-growing-on-the-vicinity-of-railroad-tracks-a-pilot-study Heavy metal concentration in plants growing on the vicinity of railroad tracks: a pilot study]", ''Challenges of Modern Technology'', vol. 3, no. 1, pp.&nbsp;42–45, ISSN 2353-4419, accessed 21 August 2016.
* {{anchor|{{harvid|Nzierżanowski|Gawroński|2012}}}}Nzierżanowski K. & Gawroński S. W. 2012, "[http://journal.young-scientists.eu/index.php/isuues/file/78-heavy-metal-concentration-in-plants-growing-on-the-vicinity-of-railroad-tracks-a-pilot-study Heavy metal concentration in plants growing on the vicinity of railroad tracks: a pilot study] {{Webarchive|url=https://web.archive.org/web/20160916073658/http://journal.young-scientists.eu/index.php/isuues/file/78-heavy-metal-concentration-in-plants-growing-on-the-vicinity-of-railroad-tracks-a-pilot-study |date=2016-09-16 }}", ''Challenges of Modern Technology'', vol. 3, no. 1, pp.&nbsp;42–45, ISSN 2353-4419, accessed 21 August 2016.
* {{anchor|{{harvid|Ohlendorf|2003}}}}Ohlendorf H. M. 2003, "Ecotoxicology of selenium", in D. J. Hoffman, B. A. Rattner, G. A. Burton & [[John Cairns (biochemist)|J. Cairns]], ''Handbook of Ecotoxicology'', 2nd ed., [[Lewis Publishers]], Boca Raton, pp.&nbsp;466–491, ISBN 978-1-56670-546-2.
* {{anchor|{{harvid|Ohlendorf|2003}}}}Ohlendorf H. M. 2003, "Ecotoxicology of selenium", in D. J. Hoffman, B. A. Rattner, G. A. Burton & [[John Cairns (biochemist)|J. Cairns]], ''Handbook of Ecotoxicology'', 2nd ed., [[Lewis Publishers]], Boca Raton, pp.&nbsp;466–491, ISBN 978-1-56670-546-2.
* {{anchor|{{harvid|Ondreička|Kortus|Ginter|1971}}}}Ondreička R., Kortus J. & Ginter E. 1971, "Aluminium, its absorption, distribution, and effects on phosphorus metabolism", in S. C. Skoryna & D. Waldron-Edward (eds), ''Intestinal Absorption of Metal Ions, Trace Elements and Radionuclides'', Pergamon press, Oxford.
* {{anchor|{{harvid|Ondreička|Kortus|Ginter|1971}}}}Ondreička R., Kortus J. & Ginter E. 1971, "Aluminium, its absorption, distribution, and effects on phosphorus metabolism", in S. C. Skoryna & D. Waldron-Edward (eds), ''Intestinal Absorption of Metal Ions, Trace Elements and Radionuclides'', Pergamon press, Oxford.
Baris 946: Baris 946:
* {{anchor|{{harvid|''Oxford English Dictionary''|1989}}}}''[[Oxford English Dictionary]]'' 1989, 2nd ed., Oxford University Press, Oxford, ISBN 978-0-19-861213-1.
* {{anchor|{{harvid|''Oxford English Dictionary''|1989}}}}''[[Oxford English Dictionary]]'' 1989, 2nd ed., Oxford University Press, Oxford, ISBN 978-0-19-861213-1.
* {{anchor|{{harvid|Pacheco-Torgal|Jalali|Fucic|2012}}}}Pacheco-Torgal F., Jalali S. & Fucic A. (eds) 2012, ''Toxicity of building materials'', [[Woodhead Publishing]], Oxford, ISBN 978-0-85709-122-2.
* {{anchor|{{harvid|Pacheco-Torgal|Jalali|Fucic|2012}}}}Pacheco-Torgal F., Jalali S. & Fucic A. (eds) 2012, ''Toxicity of building materials'', [[Woodhead Publishing]], Oxford, ISBN 978-0-85709-122-2.
* {{anchor|{{harvid|Padmanabhan|2001}}}}[[Thanu Padmanabhan|Padmanabhan T.]] 2001, ''Theoretical Astrophysics'', vol. 2, Stars and Stellar Systems, [[Cambridge University Press]], Cambidge, ISBN 978-0-521-56241-6.
* {{anchor|{{harvid|Padmanabhan|2001}}}}[[Thanu Padmanabhan|Padmanabhan T.]] 2001, ''Theoretical Astrophysics'', vol. 2, Stars and Stellar Systems, [[Cambridge University Press]], Cambridge, ISBN 978-0-521-56241-6.
* {{anchor|{{harvid|Pan|Dai|2015}}}}Pan W. & Dai J. 2015, "ADS based on linear accelerators", in W. Chao & W. Chou (eds), ''Reviews of accelerator science and technology'', vol. 8, Accelerator Applications in Energy and Security, [[World Scientific]], Singapore, pp.&nbsp;55–76, ISBN 981-3108-89-4.
* {{anchor|{{harvid|Pan|Dai|2015}}}}Pan W. & Dai J. 2015, "ADS based on linear accelerators", in W. Chao & W. Chou (eds), ''Reviews of accelerator science and technology'', vol. 8, Accelerator Applications in Energy and Security, [[World Scientific]], Singapore, pp.&nbsp;55–76, ISBN 981-3108-89-4.
* {{anchor|{{harvid|Parish|1977}}}}Parish R. V. 1977, ''The Metallic Elements'', [[Longman]], New York, ISBN 978-0-582-44278-8.
* {{anchor|{{harvid|Parish|1977}}}}Parish R. V. 1977, ''The Metallic Elements'', [[Longman]], New York, ISBN 978-0-582-44278-8.
Baris 952: Baris 952:
* {{anchor|{{harvid|Pickering|1991}}}}Pickering N. C. 1991, ''The Bowed String: Observations on the Design, Manufacture, Testing and Performance of Strings for Violins, Violas and Cellos'', Amereon, Mattituck, New York.<!--no ISBN-->
* {{anchor|{{harvid|Pickering|1991}}}}Pickering N. C. 1991, ''The Bowed String: Observations on the Design, Manufacture, Testing and Performance of Strings for Violins, Violas and Cellos'', Amereon, Mattituck, New York.<!--no ISBN-->
* {{anchor|{{harvid|Podosek|2011}}}}Podosek F. A. 2011, "Noble gases", in H. D. Holland & [[Karl Turekian|K. K. Turekian]] (eds), ''Isotope Geochemistry: From the Treatise on Geochemistry'', Elsevier, Amsterdam, pp.&nbsp;467–492, ISBN 978-0-08-096710-3.
* {{anchor|{{harvid|Podosek|2011}}}}Podosek F. A. 2011, "Noble gases", in H. D. Holland & [[Karl Turekian|K. K. Turekian]] (eds), ''Isotope Geochemistry: From the Treatise on Geochemistry'', Elsevier, Amsterdam, pp.&nbsp;467–492, ISBN 978-0-08-096710-3.
* {{anchor|{{harvid|Podsiki|2008}}}}Podsiki C. 2008, "[http://www.conservation-us.org/docs/default-source/resource-guides/heavy-metals-their-salts-and-other-compounds.pdf Heavy metals, their salts, and other compounds]", ''[[American Institute for Conservation|AIC News]],'' November, special insert, pp.&nbsp;1–4.
* {{anchor|{{harvid|Podsiki|2008}}}}Podsiki C. 2008, "[http://www.conservation-us.org/docs/default-source/resource-guides/heavy-metals-their-salts-and-other-compounds.pdf Heavy metals, their salts, and other compounds] {{Webarchive|url=https://web.archive.org/web/20140514071852/http://www.conservation-us.org/docs/default-source/resource-guides/heavy-metals-their-salts-and-other-compounds.pdf |date=2014-05-14 }}", ''[[American Institute for Conservation|AIC News]],'' November, special insert, pp.&nbsp;1–4.
* {{anchor|{{harvid|Preschel|2005}}}}Preschel J. July 29, 2005, "[http://www.cbsnews.com/news/green-bullets-not-so-eco-friendly/ Green bullets not so eco-friendly]", ''[[CBS News]]'', accessed 18 March 2016.
* {{anchor|{{harvid|Preschel|2005}}}}Preschel J. July 29, 2005, "[http://www.cbsnews.com/news/green-bullets-not-so-eco-friendly/ Green bullets not so eco-friendly] {{Webarchive|url=https://web.archive.org/web/20160629210000/https://www.cbsnews.com/news/green-bullets-not-so-eco-friendly/ |date=2016-06-29 }}", ''[[CBS News]]'', accessed 18 March 2016.
* {{anchor|{{harvid|Preuss|2011}}}}Preuss P. 17 July 2011, "[http://newscenter.lbl.gov/2011/07/17/kamland-geoneutrinos/ What keeps the Earth cooking?]," Berkeley Lab, accessed 17 July 2016.
* {{anchor|{{harvid|Preuss|2011}}}}Preuss P. 17 July 2011, "[http://newscenter.lbl.gov/2011/07/17/kamland-geoneutrinos/ What keeps the Earth cooking?] {{Webarchive|url=https://web.archive.org/web/20220121083440/https://newscenter.lbl.gov/2011/07/17/kamland-geoneutrinos/ |date=2022-01-21 }}," Berkeley Lab, accessed 17 July 2016.
* {{anchor|{{harvid|Prieto|2011}}}}[[Carlos Prieto (cellist)|Prieto C.]] 2011, ''The Adventures of a Cello: Revised Edition, with a New Epilogue,'' [[University of Texas Press]], Austin, ISBN 978-0-292-72393-1
* {{anchor|{{harvid|Prieto|2011}}}}[[Carlos Prieto (cellist)|Prieto C.]] 2011, ''The Adventures of a Cello: Revised Edition, with a New Epilogue,'' [[University of Texas Press]], Austin, ISBN 978-0-292-72393-1
* {{anchor|{{harvid|Raghuram|Soma Raju|Sriramulu|2010}}}}Raghuram P., Soma Raju I. V. & Sriramulu J. 2010, "Heavy metals testing in active pharmaceutical ingredients: an alternate approach", ''[[Pharmazie]]'', vol. 65, no. 1, pp.&nbsp;15–18, {{DOI|10.1691/ph.2010.9222}}.
* {{anchor|{{harvid|Raghuram|Soma Raju|Sriramulu|2010}}}}Raghuram P., Soma Raju I. V. & Sriramulu J. 2010, "Heavy metals testing in active pharmaceutical ingredients: an alternate approach", ''[[Pharmazie]]'', vol. 65, no. 1, pp.&nbsp;15–18, {{DOI|10.1691/ph.2010.9222}}.
Baris 965: Baris 965:
* {{anchor|{{harvid|Rehder|2010}}}}Rehder D. 2010, ''Chemistry in Space: From Interstellar Matter to the Origin of Life'', Wiley-VCH, Weinheim, ISBN 978-3-527-32689-1.
* {{anchor|{{harvid|Rehder|2010}}}}Rehder D. 2010, ''Chemistry in Space: From Interstellar Matter to the Origin of Life'', Wiley-VCH, Weinheim, ISBN 978-3-527-32689-1.
* {{anchor|{{harvid|Renner et al.|2012}}}}Renner H., Schlamp G., Kleinwächter I., Drost E., Lüchow H. M., Tews P., Panster P., Diehl M., Lang J., Kreuzer T., Knödler A., Starz K. A., Dermann K., Rothaut J., Drieselmann R., Peter C. & Schiele R. 2012, "Platinum Group Metals and compounds", in F. Ullmann (ed.), ''Ullmann's Encyclopedia of Industrial Chemistry'', vol. 28, Wiley-VCH, Weinheim, pp.&nbsp;317–388, {{DOI|10.1002/14356007.a21_075}}.
* {{anchor|{{harvid|Renner et al.|2012}}}}Renner H., Schlamp G., Kleinwächter I., Drost E., Lüchow H. M., Tews P., Panster P., Diehl M., Lang J., Kreuzer T., Knödler A., Starz K. A., Dermann K., Rothaut J., Drieselmann R., Peter C. & Schiele R. 2012, "Platinum Group Metals and compounds", in F. Ullmann (ed.), ''Ullmann's Encyclopedia of Industrial Chemistry'', vol. 28, Wiley-VCH, Weinheim, pp.&nbsp;317–388, {{DOI|10.1002/14356007.a21_075}}.
* {{anchor|{{harvid|Reyes|2007}}}}Reyes J. W. 2007, ''[http://www3.amherst.edu/~jwreyes/papers/LeadCrimeNBERWP13097.pdf Environmental Policy as Social Policy? The Impact of Childhood Lead Exposure on Crime]'', [[National Bureau of Economic Research]] Working Paper 13097, accessed 16 October 2016.
* {{anchor|{{harvid|Reyes|2007}}}}Reyes J. W. 2007, ''[http://www3.amherst.edu/~jwreyes/papers/LeadCrimeNBERWP13097.pdf Environmental Policy as Social Policy? The Impact of Childhood Lead Exposure on Crime] {{Webarchive|url=https://web.archive.org/web/20070929131323/http://www.amherst.edu/~jwreyes/papers/LeadCrimeNBERWP13097.pdf |date=2007-09-29 }}'', [[National Bureau of Economic Research]] Working Paper 13097, accessed 16 October 2016.
* {{anchor|{{harvid|Ridpath|2012}}}}[[Ian Ridpath|Ridpath I.]] (ed.) 2012, ''Oxford Dictionary of Astronomy'', 2nd ed. rev., Oxford University Press, New York, ISBN 978-0-19-960905-5.
* {{anchor|{{harvid|Ridpath|2012}}}}[[Ian Ridpath|Ridpath I.]] (ed.) 2012, ''Oxford Dictionary of Astronomy'', 2nd ed. rev., Oxford University Press, New York, ISBN 978-0-19-960905-5.
* {{anchor|{{harvid|Rockhoff|2012}}}}Rockhoff H. 2012, ''America's Economic Way of War: War and the US Economy from the Spanish–American War to the Persian Gulf War'', Cambridge University Press, Cambridge, ISBN 978-0-521-85940-0.
* {{anchor|{{harvid|Rockhoff|2012}}}}Rockhoff H. 2012, ''America's Economic Way of War: War and the US Economy from the Spanish–American War to the Persian Gulf War'', Cambridge University Press, Cambridge, ISBN 978-0-521-85940-0.
Baris 973: Baris 973:
* {{anchor|{{harvid|Ryan|2012}}}}Ryan J. 2012, ''Personal Financial Literacy'', 2nd ed., South-Western, Mason, Ohio, ISBN 978-0-8400-5829-4.
* {{anchor|{{harvid|Ryan|2012}}}}Ryan J. 2012, ''Personal Financial Literacy'', 2nd ed., South-Western, Mason, Ohio, ISBN 978-0-8400-5829-4.
* {{anchor|{{harvid|Samsonov|1968}}}}Samsonov G. V. (ed.) 1968, ''Handbook of the Physicochemical Properties of the Elements'', IFI-Plenum, New York, ISBN 978-1-4684-6066-7.
* {{anchor|{{harvid|Samsonov|1968}}}}Samsonov G. V. (ed.) 1968, ''Handbook of the Physicochemical Properties of the Elements'', IFI-Plenum, New York, ISBN 978-1-4684-6066-7.
* {{anchor|{{harvid|Sanders|2003}}}}Sanders R. 2003, "[http://www.berkeley.edu/news/media/releases/2003/12/10_heat.shtml Radioactive potassium may be major heat source in Earth's core]," ''UCBerkelyNews'', 10 December, accessed 17 July 20016.
* {{anchor|{{harvid|Sanders|2003}}}}Sanders R. 2003, "[http://www.berkeley.edu/news/media/releases/2003/12/10_heat.shtml Radioactive potassium may be major heat source in Earth's core] {{Webarchive|url=https://web.archive.org/web/20130826214233/http://www.berkeley.edu/news/media/releases/2003/12/10_heat.shtml |date=2013-08-26 }}," ''UCBerkelyNews'', 10 December, accessed 17 July 20016.
* {{anchor|{{harvid|Schweitzer|2003}}}}Schweitzer P. A. 2003, ''Metallic materials: Physical, Mechanical, and Corrosion properties'', Marcel Dekker, New York, ISBN 978-0-8247-0878-8.
* {{anchor|{{harvid|Schweitzer|2003}}}}Schweitzer P. A. 2003, ''Metallic materials: Physical, Mechanical, and Corrosion properties'', Marcel Dekker, New York, ISBN 978-0-8247-0878-8.
* {{anchor|{{harvid|Schweitzer|Pesterfield |2010}}}}[[George K. Schweitzer|Schweitzer G. K.]] & Pesterfield L. L. 2010, ''The Aqueous Chemistry of the Elements'', Oxford University Press, Oxford, ISBN 978-0-19-539335-4.
* {{anchor|{{harvid|Schweitzer|Pesterfield |2010}}}}[[George K. Schweitzer|Schweitzer G. K.]] & Pesterfield L. L. 2010, ''The Aqueous Chemistry of the Elements'', Oxford University Press, Oxford, ISBN 978-0-19-539335-4.
Baris 981: Baris 981:
* {{anchor|{{harvid|Seymour|O'Farrelly|2012}}}}Seymour R. J. & O'Farrelly J. 2012, "Platinum Group Metals", ''Kirk-Other Encyclopaedia of Chemical Technology'', John Wiley & Sons, New York, {{DOI|10.1002/0471238961.1612012019052513.a01.pub3}}.
* {{anchor|{{harvid|Seymour|O'Farrelly|2012}}}}Seymour R. J. & O'Farrelly J. 2012, "Platinum Group Metals", ''Kirk-Other Encyclopaedia of Chemical Technology'', John Wiley & Sons, New York, {{DOI|10.1002/0471238961.1612012019052513.a01.pub3}}.
* {{anchor|{{harvid|Shaw|Sahu|Mishra|1999}}}}Shaw B. P., Sahu S. K. & Mishra R. K. 1999, "Heavy metal induced oxidative damage in terrestrial plants", in M. N. V. Prased (ed.), ''Heavy Metal Stress in Plants: From Biomolecules to Ecosystems'' Springer-Verlag, Berlin, ISBN 978-3-540-40131-5.
* {{anchor|{{harvid|Shaw|Sahu|Mishra|1999}}}}Shaw B. P., Sahu S. K. & Mishra R. K. 1999, "Heavy metal induced oxidative damage in terrestrial plants", in M. N. V. Prased (ed.), ''Heavy Metal Stress in Plants: From Biomolecules to Ecosystems'' Springer-Verlag, Berlin, ISBN 978-3-540-40131-5.
* {{anchor|{{harvid|Shedd|2002}}}}Shedd K. B. 2002, "[http://minerals.usgs.gov/minerals/pubs/commodity/tungsten/tungsmyb02.pdf Tungsten"], ''Minerals Yearbook'', [[United States Geological Survey]].
* {{anchor|{{harvid|Shedd|2002}}}}Shedd K. B. 2002, "[http://minerals.usgs.gov/minerals/pubs/commodity/tungsten/tungsmyb02.pdf Tungsten"] {{Webarchive|url=https://web.archive.org/web/20190111062429/http://minerals.usgs.gov/minerals/pubs/commodity/tungsten/tungsmyb02.pdf |date=2019-01-11 }}, ''Minerals Yearbook'', [[United States Geological Survey]].
* {{anchor|{{harvid|Sidgwick|1950}}}}[[Nevil Sidgwick|Sidgwick N. V.]] 1950, ''The Chemical Elements and their Compounds'', vol. 1, Oxford University Press, London.
* {{anchor|{{harvid|Sidgwick|1950}}}}[[Nevil Sidgwick|Sidgwick N. V.]] 1950, ''The Chemical Elements and their Compounds'', vol. 1, Oxford University Press, London.
* {{anchor|{{harvid|Silva|2010}}}}Silva R. J. 2010, "Fermium, mendelevium, nobelium, and lawrencium", in L. R. Morss, N. Edelstein & J. Fuger (eds), ''The Chemistry of the Actinide and Transactinide Elements'', vol. 3, 4th ed., Springer, Dordrecht, pp.&nbsp;1621–1651, ISBN 978-94-007-0210-3.
* {{anchor|{{harvid|Silva|2010}}}}Silva R. J. 2010, "Fermium, mendelevium, nobelium, and lawrencium", in L. R. Morss, N. Edelstein & J. Fuger (eds), ''The Chemistry of the Actinide and Transactinide Elements'', vol. 3, 4th ed., Springer, Dordrecht, pp.&nbsp;1621–1651, ISBN 978-94-007-0210-3.
Baris 988: Baris 988:
* {{anchor|{{harvid|State Water Control Resources Board|1987}}}}State Water Control Resources Board 1987, ''Toxic substances monitoring program'', issue 79, part 20 of the Water Quality Monitoring Report, Sacramento, California.
* {{anchor|{{harvid|State Water Control Resources Board|1987}}}}State Water Control Resources Board 1987, ''Toxic substances monitoring program'', issue 79, part 20 of the Water Quality Monitoring Report, Sacramento, California.
* {{anchor|{{harvid|Technical Publications|1958}}}}Technical Publications 1953, ''[[Fire Engineering]]'', vol. 111, p.&nbsp;235, ISSN 0015-2587.
* {{anchor|{{harvid|Technical Publications|1958}}}}Technical Publications 1953, ''[[Fire Engineering]]'', vol. 111, p.&nbsp;235, ISSN 0015-2587.
* {{anchor|{{harvid|The Minerals, Metals and Materials Society|2016}}}}[[The Minerals, Metals and Materials Society]], ''[http://www.tms.org/administration/technicalDivisions.aspx?iframe=LMD/LMDmain.asp Light Metals Division 2016]'', accessed 22 June 2016.
* {{anchor|{{harvid|The Minerals, Metals and Materials Society|2016}}}}[[The Minerals, Metals and Materials Society]], ''[http://www.tms.org/administration/technicalDivisions.aspx?iframe=LMD/LMDmain.asp Light Metals Division 2016] {{Webarchive|url=https://web.archive.org/web/20170423052249/http://www.tms.org/administration/technicalDivisions.aspx?iframe=LMD/LMDmain.asp |date=2017-04-23 }}'', accessed 22 June 2016.
* {{anchor|{{harvid|The United States Pharmacopeia|1985}}}}''The [[United States Pharmacopeia]]'' 1985, 21st revision, The United States Pharmacopeial Convention, Rockville, Maryland, ISBN 978-0-913595-04-6.
* {{anchor|{{harvid|The United States Pharmacopeia|1985}}}}''The [[United States Pharmacopeia]]'' 1985, 21st revision, The United States Pharmacopeial Convention, Rockville, Maryland, ISBN 978-0-913595-04-6.
* {{anchor|{{harvid|Thorne|Roberts|1943}}}}Thorne P. C. L. & Roberts E. R. 1943, ''Fritz Ephraim Inorganic Chemistry'', 4th ed., Gurney and Jackson, London.
* {{anchor|{{harvid|Thorne|Roberts|1943}}}}Thorne P. C. L. & Roberts E. R. 1943, ''Fritz Ephraim Inorganic Chemistry'', 4th ed., Gurney and Jackson, London.
* {{anchor|{{harvid|Tisza|2001}}}}Tisza M. 2001, ''Physical Metallurgy for Engineers'', ASM International, Materials Park, Ohio, ISBN 978-0-87170-725-3.
* {{anchor|{{harvid|Tisza|2001}}}}Tisza M. 2001, ''Physical Metallurgy for Engineers'', ASM International, Materials Park, Ohio, ISBN 978-0-87170-725-3.
* {{anchor|{{harvid|Tokar et al.|2013}}}}Tokar E. J., Boyd W. A., Freedman J. H. & Wales M. P. 2013, "[http://accesspharmacy.mhmedical.com/content.aspx?bookid=958&sectionid=53483748 Toxic effects of metals]", in C. D. Klaassen (ed.), ''Casarett and Doull's Toxicology: the Basic Science of Poisons'', 8th ed., [[McGraw-Hill Medical]], New York, ISBN 978-0-07-176923-5, accessed 9 September 2016 {{subscription required}}.
* {{anchor|{{harvid|Tokar et al.|2013}}}}Tokar E. J., Boyd W. A., Freedman J. H. & Wales M. P. 2013, "[http://accesspharmacy.mhmedical.com/content.aspx?bookid=958&sectionid=53483748 Toxic effects of metals] {{Webarchive|url=https://web.archive.org/web/20210707203957/http://accesspharmacy.mhmedical.com/content.aspx?bookid=958&sectionid=53483748 |date=2021-07-07 }}", in C. D. Klaassen (ed.), ''Casarett and Doull's Toxicology: the Basic Science of Poisons'', 8th ed., [[McGraw-Hill Medical]], New York, ISBN 978-0-07-176923-5, accessed 9 September 2016 {{subscription required}}.
* {{anchor|{{harvid|Tomasik|Ratajewicz|1985}}}}Tomasik P. & Ratajewicz Z. 1985, ''Pyridine metal complexes,'' vol. 14, no. 6A, The Chemistry of Heterocyclic Compounds, John Wiley & Sons, New York, ISBN 978-0-471-05073-5.
* {{anchor|{{harvid|Tomasik|Ratajewicz|1985}}}}Tomasik P. & Ratajewicz Z. 1985, ''Pyridine metal complexes,'' vol. 14, no. 6A, The Chemistry of Heterocyclic Compounds, John Wiley & Sons, New York, ISBN 978-0-471-05073-5.
* {{anchor|{{harvid|Topp|1965}}}}Topp N. E. 1965, ''The Chemistry of the Rare-earth Elements'', Elsevier Publishing Company, Amsterdam.
* {{anchor|{{harvid|Topp|1965}}}}Topp N. E. 1965, ''The Chemistry of the Rare-earth Elements'', Elsevier Publishing Company, Amsterdam.
* {{anchor|{{harvid|Torrice|2016}}}}Torrice M. 2016, "[http://cen.acs.org/articles/94/i7/Lead-Ended-Flints-Tap-Water.html How lead ended up in Flint's tap water]," ''Chemical & Engineering News'', vol. 94, no. 7, pp.&nbsp;26–27.
* {{anchor|{{harvid|Torrice|2016}}}}Torrice M. 2016, "[http://cen.acs.org/articles/94/i7/Lead-Ended-Flints-Tap-Water.html How lead ended up in Flint's tap water] {{Webarchive|url=https://web.archive.org/web/20160213040031/http://cen.acs.org/articles/94/i7/Lead-Ended-Flints-Tap-Water.html |date=2016-02-13 }}," ''Chemical & Engineering News'', vol. 94, no. 7, pp.&nbsp;26–27.
* {{anchor|{{harvid|Tretkoff|2006}}}}Tretkoff E. 2006, "[https://www.aps.org/publications/apsnews/200603/history.cfm March 20, 1800: Volta describes the Electric Battery]", ''APS News, This Month in Physics History'', [[American Physical Society]], accessed 26 August 2016.
* {{anchor|{{harvid|Tretkoff|2006}}}}Tretkoff E. 2006, "[https://www.aps.org/publications/apsnews/200603/history.cfm March 20, 1800: Volta describes the Electric Battery] {{Webarchive|url=https://web.archive.org/web/20070911004911/https://www.aps.org/publications/apsnews/200603/history.cfm |date=2007-09-11 }}", ''APS News, This Month in Physics History'', [[American Physical Society]], accessed 26 August 2016.
* {{anchor|{{harvid|Uden|2005}}}}Uden P. C. 2005, 'Speciation of Selenium,' in R. Cornelis, J. Caruso, H. Crews & K. Heumann (eds), ''Handbook of Elemental Speciation II: Species in the Environment, Food, Medicine and Occupational Health,'' John Wiley & Sons, Chichester, pp.&nbsp;346–65, ISBN 978-0-470-85598-0.
* {{anchor|{{harvid|Uden|2005}}}}Uden P. C. 2005, 'Speciation of Selenium,' in R. Cornelis, J. Caruso, H. Crews & K. Heumann (eds), ''Handbook of Elemental Speciation II: Species in the Environment, Food, Medicine and Occupational Health,'' John Wiley & Sons, Chichester, pp.&nbsp;346–65, ISBN 978-0-470-85598-0.
* {{anchor|{{harvid|USEPA|1988}}}}United States Environmental Protection Agency 1988, ''Ambient Aquatic Life Water Quality Criteria for Antimony (III),'' draft, Office of Research and Development, Environmental Research Laboratories, Washington.
* {{anchor|{{harvid|USEPA|1988}}}}United States Environmental Protection Agency 1988, ''Ambient Aquatic Life Water Quality Criteria for Antimony (III),'' draft, Office of Research and Development, Environmental Research Laboratories, Washington.
* {{anchor|{{harvid|United States Environmental Protection Agency|2014}}}}[[United States Environmental Protection Agency]] 2014, ''[https://www.epa.gov/sites/production/files/2014-03/documents/ffrrofactsheet_contaminant_tungsten_january2014_final.pdf Technical Fact Sheet–Tungsten]'', accessed 27 March 2016.
* {{anchor|{{harvid|United States Environmental Protection Agency|2014}}}}[[United States Environmental Protection Agency]] 2014, ''[https://www.epa.gov/sites/production/files/2014-03/documents/ffrrofactsheet_contaminant_tungsten_january2014_final.pdf Technical Fact Sheet–Tungsten] {{Webarchive|url=https://web.archive.org/web/20201106232744/https://www.epa.gov/sites/production/files/2014-03/documents/ffrrofactsheet_contaminant_tungsten_january2014_final.pdf |date=2020-11-06 }}'', accessed 27 March 2016.
* {{anchor|{{harvid|United States Government|2014}}}}[[United States Government]] 2014, ''[https://www.gpo.gov/fdsys/pkg/CFR-2014-title40-vol29/xml/CFR-2014-title40-vol29-sec401-15.xml Toxic Pollutant List]'', Code of Federal Regulations, 40 CFR 401.15., accessed 27 March 2016.
* {{anchor|{{harvid|United States Government|2014}}}}[[United States Government]] 2014, ''[https://www.gpo.gov/fdsys/pkg/CFR-2014-title40-vol29/xml/CFR-2014-title40-vol29-sec401-15.xml Toxic Pollutant List] {{Webarchive|url=https://web.archive.org/web/20170125115817/https://www.gpo.gov/fdsys/pkg/CFR-2014-title40-vol29/xml/CFR-2014-title40-vol29-sec401-15.xml |date=2017-01-25 }}'', Code of Federal Regulations, 40 CFR 401.15., accessed 27 March 2016.
* {{anchor|{{harvid|Valkovic|1990}}}}Valkovic V. 1990, "Origin of trace element requirements by living matter", in B. Gruber & J. H. Yopp (eds), ''Symmetries in Science IV: Biological and biophysical systems'', Plenum Press, New York, pp.&nbsp;213–242, ISBN 978-1-4612-7884-9.
* {{anchor|{{harvid|Valkovic|1990}}}}Valkovic V. 1990, "Origin of trace element requirements by living matter", in B. Gruber & J. H. Yopp (eds), ''Symmetries in Science IV: Biological and biophysical systems'', Plenum Press, New York, pp.&nbsp;213–242, ISBN 978-1-4612-7884-9.
* {{anchor|{{harvid|VanGelder|2014}}}}VanGelder K. T. 2014, ''Fundamentals of Automotive Technology: Principles and Practice'', [[Jones & Bartlett Learning]], Burlington MA, ISBN 978-1-4496-7108-2.
* {{anchor|{{harvid|VanGelder|2014}}}}VanGelder K. T. 2014, ''Fundamentals of Automotive Technology: Principles and Practice'', [[Jones & Bartlett Learning]], Burlington MA, ISBN 978-1-4496-7108-2.
* {{anchor|{{harvid|Venner et al.|2004}}}}Venner M., Lessening M., Pankani D. & Strecker E. 2004, ''[http://onlinepubs.trb.org/onlinepubs/nchrp/nchrp_rpt_521.pdf Identification of Research Needs Related to Highway Runoff Management]'', [[Transportation Research Board]], Washington DC, ISBN 978-0-309-08815-2, accessed 21 August 2016.
* {{anchor|{{harvid|Venner et al.|2004}}}}Venner M., Lessening M., Pankani D. & Strecker E. 2004, ''[http://onlinepubs.trb.org/onlinepubs/nchrp/nchrp_rpt_521.pdf Identification of Research Needs Related to Highway Runoff Management] {{Webarchive|url=https://web.archive.org/web/20160822061749/http://onlinepubs.trb.org/onlinepubs/nchrp/nchrp_rpt_521.pdf |date=2016-08-22 }}'', [[Transportation Research Board]], Washington DC, ISBN 978-0-309-08815-2, accessed 21 August 2016.
* {{anchor|{{harvid|Venugopal|Luckey|1978}}}}Venugopal B. & Luckey T. D. 1978, ''Metal Toxicity in Mammals'', vol. 2, Plenum Press, New York, ISBN 978-0-306-37177-6.
* {{anchor|{{harvid|Venugopal|Luckey|1978}}}}Venugopal B. & Luckey T. D. 1978, ''Metal Toxicity in Mammals'', vol. 2, Plenum Press, New York, ISBN 978-0-306-37177-6.
* {{anchor|{{harvid|Vernon|2013}}}}Vernon R. E. 2013, "Which elements are metalloids", ''Journal of Chemical Education'', vol. 90, no. 12, pp.&nbsp;1703–1707, {{DOI|10.1021/ed3008457}}.
* {{anchor|{{harvid|Vernon|2013}}}}Vernon R. E. 2013, "Which elements are metalloids", ''Journal of Chemical Education'', vol. 90, no. 12, pp.&nbsp;1703–1707, {{DOI|10.1021/ed3008457}}.
Baris 1.022: Baris 1.022:
* {{anchor|{{harvid|Yadav|Antony|Subba Reddy|2012}}}}Yadav J. S., Antony A., Subba Reddy, B. V. 2012, "Bismuth(III) salts as synthetic tools in organic transformations", in T. Ollevier (ed.), ''Bismuth-mediated Organic Reactions'', Topics in Current Chemistry 311, Springer, Heidelberg, ISBN 978-3-642-27238-7.
* {{anchor|{{harvid|Yadav|Antony|Subba Reddy|2012}}}}Yadav J. S., Antony A., Subba Reddy, B. V. 2012, "Bismuth(III) salts as synthetic tools in organic transformations", in T. Ollevier (ed.), ''Bismuth-mediated Organic Reactions'', Topics in Current Chemistry 311, Springer, Heidelberg, ISBN 978-3-642-27238-7.
* {{anchor|{{harvid|Yang|Jolly|O'Keefe|1977}}}}Yang D. J., Jolly W. L. & O'Keefe A. 1977, "Conversion of hydrous germanium(II) oxide to germynyl sesquioxide, (HGe)<sub>2</sub>O<sub>3</sub>", ''[[Inorganic Chemistry (journal)|'Inorganic Chemistry]]'', vol. 16, no. 11, pp.&nbsp; 2980–2982, {{DOI|10.1021/ic50177a070}}.
* {{anchor|{{harvid|Yang|Jolly|O'Keefe|1977}}}}Yang D. J., Jolly W. L. & O'Keefe A. 1977, "Conversion of hydrous germanium(II) oxide to germynyl sesquioxide, (HGe)<sub>2</sub>O<sub>3</sub>", ''[[Inorganic Chemistry (journal)|'Inorganic Chemistry]]'', vol. 16, no. 11, pp.&nbsp; 2980–2982, {{DOI|10.1021/ic50177a070}}.
* {{anchor|{{harvid|Yousif |2007}}}}Yousif N. 2007, ''Geochemistry of stream sediment from the state of Colorado using NURE data'', ETD Collection for the University of Texas, El Paso, [http://digitalcommons.utep.edu/dissertations/AAI3273991 paper AAI3273991].
* {{anchor|{{harvid|Yousif |2007}}}}Yousif N. 2007, ''Geochemistry of stream sediment from the state of Colorado using NURE data'', ETD Collection for the University of Texas, El Paso, [http://digitalcommons.utep.edu/dissertations/AAI3273991 paper AAI3273991] {{Webarchive|url=https://web.archive.org/web/20181106222704/http://digitalcommons.utep.edu/dissertations/AAI3273991 |date=2018-11-06 }}.
{{refend}}
{{refend}}


Baris 1.044: Baris 1.044:


== Pranala luar ==
== Pranala luar ==
{{Portal|kimia|lingkungan}}
* {{Commons category-inline}}
* {{Commons category-inline|Heavy metals|Logam berat}}

{{artikel bagus}}


[[Kategori:Unsur logam]]
[[Kategori:Unsur logam]]

Revisi terkini sejak 6 Mei 2023 13.51

A silvery thumbnail-size chunk of osmium with a highly irregular crystalline surface.
Kristal osmium, sebuah logam berat
dengan densitas hampir dua kali lipat timbal.[1]

Logam berat umumnya didefinisikan sebagai logam dengan densitas, berat atom, atau nomor atom tinggi. Kriteria yang digunakan, dan jika metaloid disertakan, bervariasi tergantung pada penulis dan konteksnya. Dalam metalurgi, misalnya, logam berat dapat didefinisikan berdasarkan kerapatan, sedangkan pada fisika, kriteria pembeda adalah nomor atom, sementara kimiawan kemungkinan akan lebih memperhatikan sifat kimia zatnya. Definisi yang lebih spesifik telah dipublikasikan, namun tidak satu pun yang diterima secara luas. Definisi yang disurvei dalam artikel ini mencakup 96 dari 118 unsur kimia yang diketahui; hanya raksa, timbal dan bismut yang memenuhi semua kriteria. Terlepas dari kurang kesepakatnya ini, istilah tersebut (jamak atau tunggal) banyak digunakan dalam sains. Densitas lebih dari 5 g/cm3 kadang-kadang dikutip sebagai kriteria yang umum digunakan dalam batang tubuh artikel ini.

Logam yang paling awal dikenal—logam biasa seperti besi, tembaga, dan timah, dan logam mulia seperti perak, emas, dan platina—adalah logam berat. Sejak tahun 1809 dan seterusnya, ditemukan logam ringan, seperti magnesium, aluminium, dan titanium, dan juga logam berat yang kurang terkenal termasuk galium, talium, dan hafnium.

Beberapa logam berat ada yang merupakan nutrisi esensial (biasanya besi, kobalt, dan seng), atau relatif tidak berbahaya (seperti ruthenium, perak, dan indium), tetapi dapat beracun dalam jumlah besar atau dalam bentuk tertentu. Logam berat lainnya, seperti kadmium, raksa, dan timbal, sangat beracun. Sumber potensi keracunan logam berat antara lain limbah penambangan dan industri, limpasan pertanian, paparan kerja, dan cat serta pengawetan kayu.

Karakterisasi fisika dan kimia logam berat harus dilakukan dengan hati-hati, karena logam yang terlibat tidak selalu didefinisikan dengan baik. Selain relatif padat, logam berat cenderung kurang reaktif daripada logam yang lebih ringan dan memiliki sulfida dan hidroksida terlarut yang jauh lebih sedikit. Meskipun relatif mudah untuk mengenali logam berat seperti tungsten dari logam yang lebih ringan seperti natrium, beberapa logam berat seperti seng, raksa, dan timbal memiliki karakteristik logam yang lebih ringan, sebaliknya logam yang lebih ringan seperti berilium, skandium, dan titanium memiliki beberapa karakteristik logam berat.

Logam berat relatif langka di kerak bumi tetapi hadir dalam banyak aspek kehidupan modern. Mereka digunakan pada tongkat golf, mobil, antiseptik, oven yang dapat membersihkan sendiri, plastik, panel surya, telepon genggam, dan pemercepat partikel.

Definisi

Peta panas logam berat dalam tabel periodik
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
1  H He
2  Li Be B C N O F Ne
3  Na Mg Al Si P S Cl Ar
4  K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr
5  Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe
6  Cs Ba La 1 asterisk Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn
7  Fr Ra Ac 1 asterisk Rf Db Sg Bh Hs Mt Ds Rg Cn Nh Fl Mc Lv Ts Og
 
1 asterisk Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu
1 asterisk Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr
 
Jumlah yang memenuhi kriteria:
Jumlah unsur:
  
10
3
  
9
5
  
8
14
  
6–7
56
  
4–5
14
  
1–3
4
  
0
3
  
nonlogam
19
Tabel ini menunjukkan jumlah kriteria logam berat yang cocok untuk masing-masing logam, dari sepuluh kriteria yang tercantum dalam bagian ini yaitu dua berdasarkan kepadatan, tiga pada berat atom, dua pada nomor atom, dan tiga pada perilaku kimia.[n 1] Ini mengilustrasikan kurangnya kesepakatan yang menyelimuti konsep, dengan kemungkinan perkecualian raksa, timbal dan bismut.

Enam unsur di penghujung periode (baris) 4 sampai 7 kadang-kadang dianggap metaloid dan diperlakukan di sini sebagai logam, termasuk di antaranya adalah germanium (Ge), arsenik (As), selenium (Se), antimon (Sb), telurium (Te), dan astatin (At).[15][n 2] Oganesson (Og) diperlakukan sebagai nonlogam.

Logam yang ditandai dengan garis putus-putus (atau untuk At dan Fm-Ts, diprediksi) mempunyai densitas lebih dari 5 g/cm3.

Tidak ada kesepakatan luas tentang kriteria berdasarkan definisi logam berat. Makna yang berbeda-beda dapat disematkan pada istilah tersebut, tergantung konteksnya. Dalam metalurgi, misalnya, logam berat didefinisikan berdasarkan densitas,[16] sementara dalam fisika, kriteria pembedanya adalan nomor atom,[17] dan kimiawan lebih suka mendefinisikannya dengan perilaku kimianya.[9]

Rentang kriteria densitas dari di atas 3,5 g/cm3 hingga di atas 7 g/cm3.[2] Definisi berat atom dapat memiliki rentang mulai lebih besar daripada natrium (berat atom 22,98);[2] lebih besar daripada 40 (kecuali logam blok-s dan -f, artinya dimulai dari skandium);[3] atau lebih dari 200, yaitu mulai dari raksa dan seterusnya.[4] Nomor atom logam berat umumnya lebih besar daripada 20 (kalsium);[2] kadang-kadang dibatasi hinga 92 (uranium).[5] Definisi berdasarkan nomor atom telah dikritisi dengan memasukkan logam dengan densitas rendah. Misalnya, rubidium yang termasuk golongan (kolom) 1 pada tabel periodik memiliki nomor atom 37 tetapi densitasnya hanya 1,532 g/cm3, yang artinya di bawah nilai ambang bawah yang digunakan oleh penulis lain.[18] Masalah yang sama dapat terjadi dengan definisi berdasarkan berat atom.[19]

Kriteria berdasarkan perilaku kimia atau posisi tabel periodik telah lama digunakan atau diusulkan. United States Pharmacopeia memasukkan suatu pengujian logam berat yang melibatkan pengendapan ketakmurnian logam sebagai sulfida berwarnanya."[6][n 3] Pada tahun 1997, Stephen Hawkes, guru besar kimia yang menulis dalam konteks pengalaman lima puluh tahun dengan istilah logam berat, menyatakan sebagai:

"logam yang membentuk sulfida dan hidroksida tak larut, yang garamnya menghasilkan larutan berwarna dalam air, dan yang senyawa kompleksnya biasanya berwarna"

Berdasarkan logam yang dirujuknya sebagai logam berat, ia menyarankan lebih bermanfaat untuk mendefinisikan mereka sebagai (secara umum) seluruh logam dalam tabel periodik kolom ke-3 hingga 16 yang berada pada baris 4 dan seterusnya, dengan kata lain, logam transisi dan logam pasca transisi adalah logam berat.[9][n 4] Lantanida dapat memenuhi penjelasan tiga bagian Hawkes; tetapi status aktinida tidak sepenuhnya mapan;[n 5][n 6]

Dalam biokimia, logam berat kadang-kadang didefinisikan—berdasarkan perilaku asam Lewis (akseptor pasangan elektron) ion mereka dalam laruta akuatik—sebagai logam kelas B dan garis batas.[40] Dalam skema ini, ion logam kelas A lebih menyukai donor oksigen; ion kelas B memilih donor nitrogen atau belerang; dan ion perbatasan atau ambivalen menunjukkan karakteristik kelas A atau B, tergantung situasinya.[n 7] Logam kelas A, yang cenderung memiliki elektronegativitas rendah dan membentuk ikatan dengan karakter ion yang besar, adalah logam alkali dan alkali tanah, aluminium, logam golongan 3, dan lantanida serta aktinida.[n 8] Logam kelas B, yang cenderung memiliki elektronegativitas lebih tinggi dan membentuk ikatan dengan karakter kovalen yang cukup besar, terutama adalah logam transisi dan logam pasca-transisi yang lebih berat. Logam garis batas sebagian besar terdiri dari logam transisi dan pasca-transisi yang lebih ringan (ditambah arsenik dan antimon). Perbedaan antara logam kelas A dan dua kategori lainnya cukup tajam.[44] Proposal yang sering dikutip[n 9] untuk menggunakan kategori klasifikasi ini daripada[10] nama logam berat yang lebih menggugah belum banyak diadopsi.[46]

Daftar logam berat berdasarkan densitas

Densitas di atas 5 g/cm3 kadang-kadang disebut sebagai faktor pendefinisi logam berat secara umum[47] dan, dengan tidak adanya definisi yang bulat, digunakan untuk mengisi daftar ini serta (kecuali jika dinyatakan lain) sebagai patokan dalam artikel ini. Metaloid yang memenuhi kriteria logam berat—arsen dan antimon misalnya—kadang kala diperhitungkan sebagai logam berat, terutama dalam kimia lingkungan,[48] seperti dalam kasus ini. Selenium (densitas 8 g/cm3)[49] juga termasuk dalam daftar. Ia sedikit di bawah kriteria kerapatan dan kurang dikenal sebagai metaloid,[15] tetapi memiliki sifat kelarutan dalam dan reaktivitas dengan air yang serupa dengan arsen dan antimon dalam beberapa hal.[50] Logam lain kadang diklasifikasikan atau diperlakukan sebagai logam "berat", seperti berilium[51] (densitas 1,8 g/cm3), aluminium[51] (2,7 g/cm3), kalsium[52] (1,55 g/cm3),[53] dan barium[52] (3,6 g/cm3)[54] di sini diuji sebagai logam ringan dan, secara umum, tidak lagi dianggap.

Diproduksi oleh pertambangan komersial (diklasifikasikan secara informal berdasarkan kepentingan ekonomi)
Strategis (30)
Hidrogen Helium
Lithium Berilium Boron Karbon Nitrogen Oksigen Fluor Neon
Natrium Magnesium Aluminium Silikon Fosfor Sulfur Clor Argon
Potasium Kalsium Skandium Titanium Vanadium Chromium Mangan Besi Cobalt Nikel Tembaga Seng Gallium Germanium Arsen Selen Bromin Kripton
Rubidium Strontium Yttrium Zirconium Niobium Molybdenum Technetium Ruthenium Rhodium Palladium Silver Cadmium Indium Tin Antimony Tellurium Iodine Xenon
Caesium Barium Lanthanum Cerium Praseodymium Neodymium Promethium Samarium Europium Gadolinium Terbium Dysprosium Holmium Erbium Thulium Ytterbium Lutetium Hafnium Tantalum Tungsten Rhenium Osmium Iridium Platinum Gold Mercury (element) Thallium Lead Bismuth Polonium Astatine Radon
Francium Radium Actinium Thorium Protactinium Uranium Neptunium Plutonium Americium Curium Berkelium Californium Einsteinium Fermium Mendelevium Nobelium Lawrencium Rutherfordium Dubnium Seaborgium Bohrium Hassium Meitnerium Darmstadtium Roentgenium Copernicium Nihonium Flerovium Moscovium Livermorium Tennessine Oganesson
Dianggap vital untuk kepentingan
strategis beberapa negara[55]
Daftar 30 logam ini mencakup 22
yang terdaftar di sini dan 8 di bawah
(6 logam berharga dan 2 komoditas).
Berharga (8)
Hidrogen Helium
Lithium Berilium Boron Karbon Nitrogen Oksigen Fluor Neon
Natrium Magnesium Aluminium Silikon Fosfor Sulfur Clor Argon
Potasium Kalsium Skandium Titanium Vanadium Chromium Mangan Besi Cobalt Nikel Tembaga Seng Gallium Germanium Arsen Selen Bromin Kripton
Rubidium Strontium Yttrium Zirconium Niobium Molybdenum Technetium Ruthenium Rhodium Palladium Silver Cadmium Indium Tin Antimony Tellurium Iodine Xenon
Caesium Barium Lanthanum Cerium Praseodymium Neodymium Promethium Samarium Europium Gadolinium Terbium Dysprosium Holmium Erbium Thulium Ytterbium Lutetium Hafnium Tantalum Tungsten Rhenium Osmium Iridium Platinum Gold Mercury (element) Thallium Lead Bismuth Polonium Astatine Radon
Francium Radium Actinium Thorium Protactinium Uranium Neptunium Plutonium Americium Curium Berkelium Californium Einsteinium Fermium Mendelevium Nobelium Lawrencium Rutherfordium Dubnium Seaborgium Bohrium Hassium Meitnerium Darmstadtium Roentgenium Copernicium Nihonium Flerovium Moscovium Livermorium Tennessine Oganesson
Langka dan mahal[56]
Strategis:
Non-strategis:
Komoditas (9)
Hidrogen Helium
Lithium Berilium Boron Karbon Nitrogen Oksigen Fluor Neon
Natrium Magnesium Aluminium Silikon Fosfor Sulfur Clor Argon
Potasium Kalsium Skandium Titanium Vanadium Chromium Mangan Besi Cobalt Nikel Tembaga Seng Gallium Germanium Arsen Selen Bromin Kripton
Rubidium Strontium Yttrium Zirconium Niobium Molybdenum Technetium Ruthenium Rhodium Palladium Silver Cadmium Indium Tin Antimony Tellurium Iodine Xenon
Caesium Barium Lanthanum Cerium Praseodymium Neodymium Promethium Samarium Europium Gadolinium Terbium Dysprosium Holmium Erbium Thulium Ytterbium Lutetium Hafnium Tantalum Tungsten Rhenium Osmium Iridium Platinum Gold Mercury (element) Thallium Lead Bismuth Polonium Astatine Radon
Francium Radium Actinium Thorium Protactinium Uranium Neptunium Plutonium Americium Curium Berkelium Californium Einsteinium Fermium Mendelevium Nobelium Lawrencium Rutherfordium Dubnium Seaborgium Bohrium Hassium Meitnerium Darmstadtium Roentgenium Copernicium Nihonium Flerovium Moscovium Livermorium Tennessine Oganesson
Diperdagangkan dalam ton di LME
Strategis:
Non-strategis:
Minor (14)
Hidrogen Helium
Lithium Berilium Boron Karbon Nitrogen Oksigen Fluor Neon
Natrium Magnesium Aluminium Silikon Fosfor Sulfur Clor Argon
Potasium Kalsium Skandium Titanium Vanadium Chromium Mangan Besi Cobalt Nikel Tembaga Seng Gallium Germanium Arsen Selen Bromin Kripton
Rubidium Strontium Yttrium Zirconium Niobium Molybdenum Technetium Ruthenium Rhodium Palladium Silver Cadmium Indium Tin Antimony Tellurium Iodine Xenon
Caesium Barium Lanthanum Cerium Praseodymium Neodymium Promethium Samarium Europium Gadolinium Terbium Dysprosium Holmium Erbium Thulium Ytterbium Lutetium Hafnium Tantalum Tungsten Rhenium Osmium Iridium Platinum Gold Mercury (element) Thallium Lead Bismuth Polonium Astatine Radon
Francium Radium Actinium Thorium Protactinium Uranium Neptunium Plutonium Americium Curium Berkelium Californium Einsteinium Fermium Mendelevium Nobelium Lawrencium Rutherfordium Dubnium Seaborgium Bohrium Hassium Meitnerium Darmstadtium Roentgenium Copernicium Nihonium Flerovium Moscovium Livermorium Tennessine Oganesson
Tidak strategis, berharga, maupun komoditi
Diproduksi melalui transmutasi buatan (Diklasifikasikan secara informal berdasarkan stabilitas)
Waktu paruh panjang (15)
Hidrogen Helium
Lithium Berilium Boron Karbon Nitrogen Oksigen Fluor Neon
Natrium Magnesium Aluminium Silikon Fosfor Sulfur Clor Argon
Potasium Kalsium Skandium Titanium Vanadium Chromium Mangan Besi Cobalt Nikel Tembaga Seng Gallium Germanium Arsen Selen Bromin Kripton
Rubidium Strontium Yttrium Zirconium Niobium Molybdenum Technetium Ruthenium Rhodium Palladium Silver Cadmium Indium Tin Antimony Tellurium Iodine Xenon
Caesium Barium Lanthanum Cerium Praseodymium Neodymium Promethium Samarium Europium Gadolinium Terbium Dysprosium Holmium Erbium Thulium Ytterbium Lutetium Hafnium Tantalum Tungsten Rhenium Osmium Iridium Platinum Gold Mercury (element) Thallium Lead Bismuth Polonium Astatine Radon
Francium Radium Actinium Thorium Protactinium Uranium Neptunium Plutonium Americium Curium Berkelium Californium Einsteinium Fermium Mendelevium Nobelium Lawrencium Rutherfordium Dubnium Seaborgium Bohrium Hassium Meitnerium Darmstadtium Roentgenium Copernicium Nihonium Flerovium Moscovium Livermorium Tennessine Oganesson
Waktu paruh lebih dari 1 hari
Tak kekal (16)
Hidrogen Helium
Lithium Berilium Boron Karbon Nitrogen Oksigen Fluor Neon
Natrium Magnesium Aluminium Silikon Fosfor Sulfur Clor Argon
Potasium Kalsium Skandium Titanium Vanadium Chromium Mangan Besi Cobalt Nikel Tembaga Seng Gallium Germanium Arsen Selen Bromin Kripton
Rubidium Strontium Yttrium Zirconium Niobium Molybdenum Technetium Ruthenium Rhodium Palladium Silver Cadmium Indium Tin Antimony Tellurium Iodine Xenon
Caesium Barium Lanthanum Cerium Praseodymium Neodymium Promethium Samarium Europium Gadolinium Terbium Dysprosium Holmium Erbium Thulium Ytterbium Lutetium Hafnium Tantalum Tungsten Rhenium Osmium Iridium Platinum Gold Mercury (element) Thallium Lead Bismuth Polonium Astatine Radon
Francium Radium Actinium Thorium Protactinium Uranium Neptunium Plutonium Americium Curium Berkelium Californium Einsteinium Fermium Mendelevium Nobelium Lawrencium Rutherfordium Dubnium Seaborgium Bohrium Hassium Meitnerium Darmstadtium Roentgenium Copernicium Nihonium Flerovium Moscovium Livermorium Tennessine Oganesson
Waktu paruh kurang dari 1 hari
Antimon, arsenik, germanium dan telurium umumnya dikenal sebagai metaloid; selenium juga kurang umum.[15]
Astatin diprediksi sebagai logam.[57]
Radioaktif Semua isotop dari 34 unsur ini tidak stabil dan karenanya bersifat radioaktif. Meskipun ini juga berlaku untuk bismut, namun tidak ditandai karena waktu paruhnya yang 19 miliar miliar tahun, lebih dari satu miliar kali 13,8 miliar tahun yang diperkirakan usia alam semesta.[58][59]
Delapan unsur ini terjadi secara alami namun dalam jumlah yang terlalu kecil untuk layak diekstraksi secara ekonomi.[60]

Asal dan penggunaan istilah

Seberapa berat logam yang terbentuk secara alami seperti emas, tembaga, dan besi mungkin telah diperhatikan sejak masa prasejarah dan, mengingat kelenturannya, mencetuskan usaha pertama untuk menciptakan ornamen, alat, dan senjata logam.[61] Semua logam yang ditemukan sejak saat itu sampai 1809 memiliki kerapatan yang relatif tinggi; seberapa berat mereka dianggap sebagai kriteria yang sangat berbeda.[62]

Sejak 1809 dan seterusnya, logam ringan seperti natrium, kalium, dan strontium diisolasi. Densitas mereka yang rendah menantang pemikiran konvensional dan diusulkan untuk menyebut mereka sebagai metaloid (artinya "menyerupai logam dalam bentuk maupun penampilan").[63] Saran ini diabaikan; unsur baru kemudian dikenali sebagai logam, dan istilah metaloid kemudian digunakan untuk merujuk pada unsur non-logam dan, kemudian, untuk unsur yang sulit dijelaskan sebagai logam atau non-logam.[64]

Penggunaan awal istilah "logam berat" berasal dari tahun 1817, ketika kimiawan Jerman Leopold Gmelin membagi unsur-unsur ke dalam kelompok nonlogam, logam ringan, dan logam berat.[65] Logam ringan memiliki densitas 0,860-5,0 g/cm3; logam berat 5,308-22,000.[66][n 10] Istilah ini kemudian dikaitkan dengan unsur-unsur dengan berat atom atau nomor atom tinggi.[18] Kadang-kadang istilah ini digunakan secara bergantian dengan istilah unsur berat. Misalnya, dalam membahas sejarah kimia nuklir, Magee[67] mencatat bahwa aktinida itu pernah dianggap mewakili kelompok transisi elemen berat yang baru sedangkan Seaborg beserta rekan kerjanya, "menyukai ... suatu deret seperti logam-berat-tanah langka ...". Dalam astronomi, unsur berat adalah unsur yang lebih berat daripada hidrogen dan helium.[68]

Kritik

Pada tahun 2002, toksikolog Skotlandia John Duffus meninjau kembali definisi yang telah digunakan selama 60 tahun dan menyimpulkan bahwa definisi tersebut begitu beragam sehingga secara efektif membuat istilah itu tidak berarti.[69] Seiring dengan temuan ini, status logam berat beberapa logam terkadang ditentang dengan alasan bahwa mereka terlalu ringan, atau terlibat dalam proses biologis, atau jarang membahayakan lingkungan. Contohnya antara lain skandium (terlalu ringan);[18][70] vanadium hingga seng (terlibat proses biologis);[71] dan rhodium, indium, serta osmium (terlalu langka).[72]

Popularitas

Meski memiliki makna yang dipertanyakan, referensi tentang istilah logam berat muncul secara teratur dalam literatur ilmiah. Sebuah penelitian tahun 2010 menemukan bahwa hal itu telah semakin banyak digunakan dan tampaknya telah menjadi bagian dari bahasa sains.[73] Istilah tersebut dikatakan sebagai istilah yang dapat diterima, mengingat kenyamanan dan keakrabannya, asalkan disertai dengan definisi yang ketat.[40] Rekanan logam berat, logam ringan, disinggung oleh The Minerals, Metals and Materials Society termasuk "aluminium, magnesium, berilium, titanium, litium, dan logam reaktif lainnya."[74] Logam-logam tersebut memiliki kerapatan 0,534 sampai 4,54 g/cm3.

Peran biologis

Jumlah logam berat dalam
tubuh manusia berbobot rata-rata 70 kg
Unsur Miligram[75]
Besi 4000 4000
 
Seng 2500 2500
 
Timbal[n 11] 120 120
 
Tembaga 70 70
 
Timah[n 12] 30 30
 
Vanadium 20 20
 
Kadmium 20 20
 
Nikel[n 13] 15 15
 
Selenium 14 14
 
Mangan 12 12
 
Lain-lain[n 14] 200 200
 
Total 7000

Sejumlah renik beberapa logam berat, sebagian besar berada pada periode 4, diperlukan untuk proses biologis tertentu. Logam tersebut adalah besi dan tembaga (untuk transportasi oksigen dan elektron); kobalt (sintesis kompleks dan metabolisme sel); seng (hidroksilasi);[80] vanadium dan mangan (fungsi dan pengatur enzim); kromium (pemanfaatan glukosa); nikel (reproduksi sel); arsenik (pertumbuhan metabolik pada beberapa hewan dan mungkin pada manusia) dan selenium (fungsi antioksidan dan produksi hormon).[81] Periode 5 dan 6 mengandung lebih sedikit logam berat esensial, selaras dengan pola umum bahwa unsur yang lebih berat cenderung kurang melimpah dan unsur-unsur langka cenderung kurang penting dalam hal nutrisi.[82] Dalam periode 5, molibdenum diperlukan sebagai katalis dalam reaksi redoks; kadmium kadang-kadang digunakan oleh beberapa diatom laut untuk fungsi yang sama; dan timah mungkin diperlukan untuk pertumbuhan sedikit spesies.[83] Pada periode 6, tungsten diperlukan oleh beberapa arkea dan bakteri untuk proses metabolisme.[84] Tubuh manusia dengan berat rata-rata 70 kg mengandung sekitar 0,01% logam berat (~7 g, ekivalen dengan berat dua kacang polong kering, yang terdiri dari besi sekitar 4 g, seng 2,5 g, dan timbal 0,12 g), 2% logam ringan (~1,4 kg, setara berat botol anggur) dan hampir 98% nonlogam (sebagian besar air).[85][n 15]

Defisiensi logam berat esensial periode 4-6 ini dapat meningkatkan kerentanan terhadap keracunan logam berat.[86] Sebagian kecil logam berat non-esensial juga telah diamati memiliki efek biologis. Galium, germanium (suatu metaloid), indium, dan sebagian besar lantanida dapat menstimulasi metabolisme, sedangkan titanium meningkatkan pertumbuhan pada tanaman,[87] (meski tidak selalu dianggap sebagai logam berat).

Toksisitas

Fokus bagian ini terutama pada efek toksik logam berat yang lebih serius, termasuk kanker, kerusakan otak atau kematian, dan bukan bahaya yang dapat menyebabkan salah satu dari kulit, paru-paru, perut, ginjal, hati, atau jantung. Untuk informasi lebih spesifik, lihat Toksisitas logam, Logam berat beracun, atau artikel masing-masing unsur atau senyawa.

Logam berat sering dianggap sangat beracun atau merusak lingkungan.[88] Memang ada beberapa, sementara beberapa lainnya beracun jika dan hanya jika dikonsumsi berlebihan atau ditemui dalam bentuk tertentu.

Logam berat lingkungan

Kromium, arsenik, kadmium, merkuri, dan timbal memiliki potensi terbesar yang dapat menyebabkan kerusakan karena penggunaannya yang luas, toksisitas beberapa bentuk gabungan atau unsurnya, dan penyebarannya yang luas di lingkungan.[89] Kromium heksavalen, misalnya, sangat beracun seperti uap raksa dan banyak senyawa raksa.[90] Kelima unsur ini memiliki affinitas yang kuat terhadap belerang; dalam tubuh manusia mereka biasanya terikat pada enzim, melalui gugus tiol (-SH), yang bertanggung jawab untuk mengendalikan laju reaksi metabolik. Ikatan belerang-logam yang dihasilkan menghambat fungsi enzim yang terlibat; memperburuk kesehatan manusia, kadang-kadang berakibat fatal.[91] Kromium (dalam bentuk heksavalennya) dan arsenik adalah karsinogen; kadmium menyebabkan penyakit tulang degeneratif; dan raksa dan timbal merusak sistem saraf pusat

Timbal adalah kontaminan logam berat yang paling umum.[92] Tingkatannya di lingkungan perairan masyarakat industri diperkirakan dua sampai tiga kali tingkatan di masa pra-industri.[93] Sebagai komponen tetraetil timbal, (CH''";, timbal digunakan secara luas dalam bensin selama tahun 1930-1970-an.[94] Meskipun penggunaan bensin bertimbal sudah lenyap dari bumi Amerika Utara pada tahun 1996, tanah di sekitar jalan yang dibangun sebelum masa ini mengandung timbal dalam konsentrasi tinggi.[95] Penelitian terakhir menunjukkan korelasi statistik yang signifikan antara laju penggunaan bensin bertimbal dan tingkat kriminalitas dengan kekerasan di Amerika Serikat; dengan memperhitungkan jeda waktu 22 tahun (untuk usia rata-rata kriminal dengan kekerasan), kurva kejahatan dengan kekerasan sebanding dengan kurva paparan timbal.[96]

Logam berat lainnya yang dicatat untuk sifat potensi bahayanya, biasanya sebagai polutan toksik lingkungan, termasuk mangan (kerusakan sitem saraf pusat);[97] kobalt dan nikel (karsinogen);[98] tembaga,[99] seng,[100] selenium[101] dan perak[102] (gangguan endokrin, kelainan bawaan, atau efek keracunan umum pada ikan, tumbuhan, unggas, atau organisme air lainnya); timah, sebagai organotimah (kerusakan sistem saraf pusat);[103] antimon (ditengarai karsinogen);[104] dan talium (kerusakan sistem saraf pusat).[99][n 16][n 17]

Logam berat nutrisi esensial

Logam berat yang penting untuk kehidupan bisa menjadi racun jika dikonsumsi berlebihan; beberapa memiliki bentuk beracun yang sangat penting. Vanadium pentoksida (V) bersifat karsinogenik pada hewan dan, bila dihirup, menyebabkan kerusakan DNA.[99] Ion ungu permanganat MnO4 adalah racun liver dan ginjal.[108] Menelan lebih dari 0,5 gram zat besi dapat menyebabkan gagal jantung; Overdosis semacam itu paling sering terjadi pada anak-anak dan bisa berakibat kematian dalam waktu 24 jam.[99] Nikel karbonil (Ni), dengan kadar 30 ppm, dapat menyebabkan kegagalan pernafasan, kerusakan otak dan kematian.[99] Mengkonsumsi 1 gram atau lebih tembaga sulfat (Cu(SO''";) dapat berakibat fatal; korban selamat mungkin mengalami kerusakan organ yang parah.[109] Lebih dari lima miligram selenium sangat beracun; ini kira-kira sepuluh kali dari asupan harian maksimum yang direkomendasikan (0,45 mg);[110] keracunan jangka panjang bisa mengakibatkan efek paralitik.[99][n 18]

Logam berat lainnya

Beberapa logam berat non-esensial memiliki satu atau lebih bentuk yang beracun. Kegagalan dan fatalitas ginjal telah tercatat timbul dari konsumsi suplemen germannium (konsumsi total ~15 hingga 300 g selama periode dua bulan hingga tiga tahun).[99] Paparan osmium tetroksida (OsO) dapat menyebabkan kerusakan mata permanen dan memicu kegagalan respirasi[112] serta kematian.[113] Garam indium beracun jika dikonsumsi lebih dari beberapa miligram dan akan berdampak pada ginjal, liver, dan jantung.[114] Cisplatin (PtCl), yang merupakan obat penting yang digunakan untuk membunuh sel kanker, juga merupakan racun bagi ginjal dan saraf.[99] Senyawa bismut dapat menyebabkan kerusakan liver jika dikonsumsi berlebih; senyawa uranium yang tidak larut, serta radiasi berbahaya yang dipancarkannya, dapat menyebabkan kerusakan ginjal permanen.[115]

Sumber paparan

Logam berat dapat menurunkan kualitas udara, air, dan tanah, dan kemudian menyebabkan masalah kesehatan bagi tanaman, hewan, dan manusia, ketika terjadi penumpukan sebagai hasil aktivitas industri.[116] Sumber logam berat yang umum dalam konteks ini meliputi aktivitas pertambangan dan limbah industri; gas buang kendaraan; baterai asam timbal; pupuk; cat; dan kayu olahan;[117] infrastruktur pasokan air yang sudah tua;[118] dan mikroplastik yang terapung di samudera dunia.[119] Contoh terkini kontaminasi logam berat dan risiko kesehatan meliputi kasus penyakit Minamata, Jepang (1932-1968; tuntutan hukum tahun 2016);[120] bencana bendungan Bento Rodrigues di Brazil,[121] kandungan timbal yang tinggi pada pasokan air minum kepada penduduk Flint, Michigan, di timur laut Amerika Serikat.[122]

Pembentukan, kelimpahan, keterjadian, dan ekstraksi

 
Logam berat dalam kerak bumi:
kelimpahan dan kemunculan atau sumber utama[n 19]
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
1  H He
2  Li Be B C N O F Ne
3  Na Mg Al Si P S Cl Ar
4  K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr
5  Rb Sr Y Zr Nb Mo Ru Rh Pd Ag Cd In Sn Sb Te I Xe
6  Cs Ba La 1 asterisk Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi
7  1 asterisk
1 asterisk Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu
1 asterisk Th U
 
   Paling melimpah (56.300 ppm berat)
   Jarang (0,01–0,99 ppm)
   Melimpah (100–999 ppm)
   Langka (0,0001–0,0099 ppm)
   Tidak umum (1–99 ppm)
 
 
Logam berat di sebelah kiri garis pemisah terjadi (atau bersumber) terutama sebagai litofili; yang di sebelah kanan, sebagai kalkofili kecuali emas (siderofili) dan timah (litofili).

Logam berat sampai sekitar besi (dalam tabel periodik) sebagian besar terbentuk melalui nukleosintesis bintang. Dalam proses ini, unsur yang lebih ringan mulai dari hidrogen hingga silikon mengalami reaksi fusi berturut-turut di dalam bintang, melepaskan cahaya dan panas dan membentuk unsur yang lebih berat dengan nomor atom yang lebih tinggi.[126]

Logam berat yang lebih berat biasanya tidak terbentuk melalui cara ini karena reaksi fusi yang melibatkan inti tersebut akan lebih mengkonsumsi energi daripada melepaskan energi.[127] Sebaliknya, sebagian besar disintesis (dari unsur dengan nomor atom yang lebih rendah) melalui penangkapan neutron, dengan dua moda utama penangkapan berulang ini adalah proses s dan proses r. Dalam proses s ("s" singkatan dari "slow", lambat), tangkapan tunggal dipisahkan oleh tahun atau dekade, sehingga inti yang tidak stabil mengalami peluruhan beta,[128] Sementara dalam proses r ("rapid", cepat), tangkapan terjadi lebih cepat daripada peluruhan nuklir. Oleh karena itu, proses s membutuhkan jalur yang kurang lebih jelas: sebagai contoh, inti kadmium-110 yang stabil dibombardir secara berturut-turut oleh neutron bebas di dalam bintang sampai membentuk inti kadmium-115 yang tidak stabil dan meluruh membentuk indium-115 (yang hampir stabil, dengan waktu paruh 30.000 kali usia alam semesta). Inti ini menangkap neutron dan membentuk indium-116, yang tidak stabil, dan meluruh membentuk timah-116, dan seterusnya.[126][129][n 20] Sebaliknya, tidak ada jalur seperti itu dalam proses r. Proses s berhenti di bismut karena dua unsur berikutnya, polonium dan astatin, memiliki waktu paruh pendek, yang meluruh menjadi bismut atau timbal. Proses r sangat cepat sehingga bisa melewati zona ketidakstabilan ini dan terus membentuk unsur yang lebih berat seperti thorium dan uranium.[131]

Logam berat memadat di planet-planet sebagai hasil proses evolusi dan destruksi bintang. Bintang kehilangan sebagian besar massa mereka saat terlontar di akhir masa hidup mereka, dan kadang-kadang, sebagai hasil penggabungan bintang neutron,[132][n 21] akan meningkatkan kelimpahan unsur yang lebih berat daripada helium di media antar bintang. Ketika daya tarik gravitasi menyebabkan materi ini menyatu dan runtuh, terbentuklah bintang dan planet baru.[134]

Kerak bumi terbuat dari kira-kira 5% logam berat, dengan 95%nya (dari 5% tersebut) adalah besi. Sedangkan 95% sisanya adalah logam ringan (~20%) dan non-logam (~75%).[123] Meskipun logam berat secara keseluruhan langka, ia dapat terkonsentrasi dalam jumlah yang dapat diekstraksi secara ekonomis akibat pembentukan gunung, erosi, atau proses geologi lainnya.[135]

Logam berat terutama ditemukan sebagai litofil (kecenderungan menyatu dengan batu) atau kalkofil (kecenderungan menyatu dengan mineral). Logam berat litofil terutama adalah unsur-unsur blok-f dan blok-d yang lebih reaktif. Mereka memiliki afinitas yang kuat terhadap oksigen dan sebagian besar berada sebagai mineral silikat dengan densitas relatif rendah.[136] Logam berat kalkofil terutama adalah unsur-unsur blok d yang kurang reaktif, dan logam blok-p periode 4-6 serta metaloid. Mereka biasanya ditemukan dalam mineral sulfida yang tidak larut. Kalkofil lebih padat daripada litofil, sehingga tenggelam lebih rendah ke dalam kerak pada saat pemadatannya, ia cenderung kurang melimpah dibandingkan dengan litofil.[137]

Di sisi lain, emas adalah unsur siderofil, atau cenderung menyatu dengan besi. Ia tidak mudah membentuk senyawa dengan oksigen maupun belerang.[138] Pada saat pembentukan bumi, dan sebagai logam yang paling mulia (inert), emas tenggelam ke dalam inti karena kecenderungannya untuk membentuk logam paduan densitas tinggi. Konsekuensinya, ini adalah logam yang relatif langka.[139] Beberapa logam berat (kurang) mulia lainnya—molibdenum, rhenium, logam golongan platina (ruthenium, rhodium, paladium, osmium, iridium, dan platina), germanium, dan timah—dapat diperhitungkan sebagai siderofil tapi hanya dalam hal kejadian utama mereka di bumi (inti, mantel, dan kerak), bukan kerak bumi. Logam-logam ini dinyatakan terjadi di kerak bumi, dalam jumlah kecil, terutama sebagai kalkofil (jarang yang berada dalam bentuk aslinya).[140][n 22]

Konsentrasi logam berat di bawah kerak bumi umumnya lebih tinggi, sebagian besar ditemukan dalam inti besi-silikon-nikel. Platina, misalnya, menyusun sekitar 1 bagian per miliar kerak sedangkan konsentrasinya pada intinya diperkirakan hampir 6.000 kali lebih tinggi.[141][142] Spekulasi terkini menunjukkan bahwa uranium (dan torium) dalam inti bumi dapat menghasilkan panas dalam jumlah besar yang mendorong lempeng tektonik dan (akhirnya) menopang medan magnet bumi.[143][n 23]

Untuk memperoleh logam berat dari bijihnya cukup kompleks karena harus memperhatikan jenis bijih, sifat kimia logam yang terlibat, dan nilai ekonomis dari berbagai metode ekstraksi yang tersedia. Negara dan pengolahan yang berbeda mungkin menggunakan proses yang berbeda, termasuk yang berbeda dari yang dikupas di sini.

Secara garis besar, dan dengan beberapa pengecualian, logam berat litofil dapat diekstraksi dari bijihnya dengan memberi perlakuan listrik atau kimia, sedangkan logam berat kalkofil diperoleh dengan memanggang bijih sulfida mereka untuk menghasilkan oksida yang sesuai, dan kemudian memanaskannya untuk mendapatkan logam mentah.[145][n 24] Radium terjadi dalam jumlah yang terlalu kecil untuk ditambang ekonomis malah dapat diperoleh dari pemakaian bahan bakar nuklir.[148] Kalkofil logam golongan platina (PGM) terutama terjadi dalam jumlah kecil (campuran) dengan bijih kalkofil lainnya. Bijih yang terlibat perlu dilebur, dipanggang, lalu dilindi (leaching) dengan asam sulfat untuk menghasilkan residu PGM. Ini kemudian disuling secara kimia untuk mendapatkan masing-masing logam dalam bentuk murni mereka.[149] Dibandingkan logam lainnya, PGM relatif mahal karena kelangkaannya[150] dan biaya produksinya yang tinggi.[151]

Emas, suatu siderofil, paling umum diperoleh dengan melarutkan bijihnya dalam larutan sianida.[152] Emas membentuk disianoaurat(I), misalnya:

2 Au + H + ½ O + KCN → 2 K[Au(CN)2] + 2 KOH.

Seng ditambahkan ke dalam campuran dan, karena lebih reaktif daripada emas, mengusir emas:

2 [Au(CN)2] + Zn → K] + 2 Au.

Emas mengendap dalam larutan sebagai lumpur, dan dipisahkan dari larutannya dengan cara disaring, kemudian dilelehkan.[153]

Sifat logam berat dibandingkan dengan logam ringan

Beberapa sifat fisika dan kimia umum logam ringan dan berat dirangkum dalam tabel di bawah. Perbandingannya harus dicermati dengan hati-hati karena istilah logam ringan dan logam berat tidak selalu didefinisikan secara konsisten. Selain itu, sifat fisika kekerasan dan kekuatan tarik dapat sangat bervariasi tergantung pada kemurnian, ukuran butir dan perlakuan awal.[154]

Sifat logam ringan dan berat
Sifat fisika Logam ringan Logam berat
Densitas Biasanya lebih rendah Biasanya lebih tinggi
Kekerasan[155] Cenderung lunak, mudah dipotong atau ditekuk Sebagian besar cukup keras
Ekspansivitas termal[156] Sebagian besar lebih tinggi Sebagian besar lebih rendah
Titik lebur Sebagian besar rendah[157] Rendah sampai yang sangat tinggi[158]
Kekuatan tarik[159] Sebagian besar lebih rendah Sebagian besar lebih tinggi
Sifat kimia Logam ringan Logam berat
Lokasi Tabel periodik Paling banyak ditemukan dalam golongan 1 dan 2[160] Hampir semua ditemukan dalam golongan 3 sampai 16
Kelimpahan dalam kerak bumi[123][161] Lebih melimpah Kurang melimpah
Keterjadian (atau sumber) utama Litofil[125] Litofil atau kalkofils (Au adalah suatu siderofil)
Reaktivitas[74][161] Lebih reaktif Kurang reaktif
Sulfida Dapat larut sampai tak larut[n 25] Sangat tidak dapat larut[166]
Hidroksida Dapat larut sampai tak larut[n 26] Umumnya tidak dapat larut[170]
Garam[163] Sebagian besar membentuk larutan tak berwarna dalam air Sebagian besar membentuk larutan berwarna dalam air
Kompleks Sebagian besar tak berwarna[171] Sebagian besar berwarna[172]
Peran biologis[173] Termasuk makronutrien (Na, Mg, K, Ca) Termasuk mikronutrien (V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Mo)

Sifat ini membuatnya relatif mudah untuk membedakan logam ringan seperti natrium dari logam berat seperti tungsten, namun perbedaannya menjadi kurang jelas pada daerah perbatasan. Logam struktural ringan seperti berilium, skandium, dan titanium memiliki beberapa karakteristik logam berat, seperti titik leleh yang lebih tinggi;[n 27] logam berat pasca-transisi seperti seng, kadmium, dan timbal memiliki beberapa karakteristik logam ringan, seperti relatif lunak, memiliki titik lebur yang lebih rendah,[n 28] dan membentuk kompleks yang tidak berwarna.[20][22][23]

Penggunaan

Logam berat hadir di hampir semua aspek kehidupan modern. Besi mungkin yang paling umum karena menyumbang 90% dari semua logam olahan. Platina bisa jadi yang paling banyak dijumpai, atau digunakan untuk memproduksi, 20% dari semua barang konsumsi[178]

Beberapa penggunaan logam berat yang umum bergantung pada karakteristik umum logam seperti konduktivitas listrik dan reflektivitas atau karakteristik umum logam berat seperti densitas, kekuatan, dan daya tahan. Kegunaan lainnya bergantung pada karakteristik unsur tertentu, seperti peran biologisnya sebagai nutrisi atau racun atau beberapa sifat atom tertentu lainnya. Contoh sifat atom tersebut meliputi: orbital d atau f yang terisi sebagian (dalam banyak logam berat transisi, lantanida, dan aktinida) yang memungkinkan pembentukan senyawa berwarna;[179] kapasitas sebagian besar ion logam berat (seperti platina,[180] serium[181] atau bismut[182]) ada di tingkat oksidasi yang berbeda dan oleh karena itu bertindak sebagai katalis;[183] orbital 3d atau 4f yang tumpangsuh (dalam besi, kobal, dan nikel, atau logam berat lantanida dari europium sampai thulium) yang menimbulkan efek magnetik;[184] dan jumlah atom dan kerapatan elektron yang tinggi yang mendukung aplikasi sains nuklir.[185] Penggunaan logam berat yang umum dapat dikelompokkan secara luas ke dalam enam kategori berikut.[186][n 29]

Berdasarkan berat atau densitas

Looking down on the top of a small wooden boat-like shape. Four metal strings run along the middle of the shape down its long axis. The strings pass over a small raised wooden bridge positioned in the centre of the shape so that the strings sit above the deck of the cello.
Dalam cello (contoh yang ditunjukkan di atas) atau biola, dawai C terkadang mengandung tungsten; densitasnya yang tinggi memungkinkan membentuk dawai berdiameter lebih kecil dan meningkatkan daya tanggap.[187]

Beberapa penggunaan logam berat, termasuk di bidang olahraga, teknik mesin, persenjataan militer, dan teknik nuklir, memanfaatkan kerapatan mereka yang relatif tinggi. Dalam dunia penyelaman, timbal digunakan sebagai ballast;[188] dalam pacuan kuda cacat masing-masing kuda harus membawa timbal dengan bobot yang telah ditentukan, berdasarkan faktor termasuk kinerja sebelumnya, sehingga dapat mengimbangi peluang berbagai pesaing.[189] Dalam golf, sisipan tungsten, kuningan, atau tembaga pada tongkat golf (club) untuk fairway menurunkan pusat gravitasi club sehingga memudahkan untuk melayangkan bola ke udara;[190] dan bola golf dengan inti tungsten diklaim memiliki karakteristik layang yang lebih baik.[191] Dalam fly fishing,[n 30] umpan lalat memiliki lapisan PVC yang dicampur dengan bubuk tungsten, sehingga mereka tenggelam pada tingkat yang dibutuhkan.[192] Dalam olahraga lapangan, bola baja yang digunakan dalam event lontar martil dan tolak peluru diisi dengan timbal untuk mencapai berat minimum yang dibutuhkan berdasarkan peraturan internasional.[193] Tungsten digunakan dalam bola lontar martil setidaknya sampai tahun 1980; ukuran bola minimum meningkat pada tahun 1981 untuk menghilangkan kebutuhan akan logam mahal (tiga kali lipat biaya martil lainnya) yang umumnya tidak tersedia di semua negara.[194] Martil tungsten sangat padat sehingga mereka menembus terlalu dalam ke rumput.[195]

Dalam teknik mesin, logam berat digunakan untuk pemberat di kapal,[196] pesawat terbang,[197] dan kendaraan bermotor;[198] atau pada penyeimbang pada roda dan crankshaft,[199] giroskop, dan baling-baling,[200] serta kopling sentrifugal, dalam situasi yang membutuhkan berat maksimum dalam ruang minimum (misalnya dalam penggerak arloji).[197]

Semakin tinggi kerapatan proyektil, semakin efektif daya tembusnya pada pelat baja yang berat;... Os, Ir, Pt, dan Re ... mahal ... U menawarkan kombinasi yang menarik antara kepadatan tinggi, biaya terjangkau dan ketangguhan fraktur yang tinggi.

AM Russell and KL Lee
Structure–property relations
in nonferrous metals
(2005, p. 16)

Dalam persenjataan militer, tungsten atau uranium digunakan dalam pelapisan perisai tempur[201] dan proyektil pembobol perisai,[202] serta senjata nuklir untuk meningkatkan efisiensi (dengan merefleksikan neutron dan sesaat menunda perluasan bahan reaksi).[203] Pada tahun 1970-an, tantalum ditemukan lebih efektif daripada tembaga untuk shaped charge dan senjata anti-perisai bentukan ledakan (bahasa Inggris: explosively formed anti-armour weapons) karena kerapatannya yang lebih tinggi, yang memungkinkan konsentrasi gaya yang lebih besar, dan deformabilitas yang lebih baik.[204] Logam berat yang kurang beracun, seperti tembaga, timah, tungsten, dan bismut, dan mungkin juga mangan (dan juga boron, metaloid), telah menggantikan timbal dan antimon dalam peluru hijau yang digunakan oleh beberapa tentara dan dalam beberapa amunisi tembak-tembakan rekreasi.[205] Keraguan telah diajukan tentang keamanan (atau kredensial hijau) tungsten.[206]

Karena bahan yang lebih padat menyerap lebih banyak emisi radioaktif daripada yang ringan, logam berat berguna sebagai perisai radiasi dan memusatkan sinar radiasi pada akselerator linier dan aplikasi radioterapi.[207]

Berdasarkan kekuatan atau daya tahan

Patung kolosal seorang wanita berjubah yang menggenggam obor di tangan kirinya yang terangkat dan satu tablet di tangannya yang lain
Patung Liberty. Armatur paduan baja nirkarat[208] memberikan kekuatan struktural; kulit tembaga memberikan ketahanan terhadap korosi.[n 31]

Kekuatan atau daya tahan logam berat seperti kromium, besi, nikel, tembaga, seng, molibdenum, timah, tungsten, dan timbal, serta paduannya, membuat mereka berguna untuk pembuatan artefak seperti alat, mesin,[210] peralatan rumah tangga[211] perabotan,[212] pipa,[211] rel kereta,[213] gedung[214] dan jembatan,[215] mobil,[211] kunci,[216] furnitur,[217] kapal,[196] pesawat terbang,[218] koin[219] dan perhiasan.[220] Mereka juga digunakan sebagai aditif paduan untuk meningkatkan sifat logam lainnya.[n 32] Dari dua lusin unsur, hanya dua yang telah digunakan dalam mata uang monetisasi dunia, karbon dan aluminium, bukan logam berat.[222][n 33] Emas, perak, dan platina digunakan dalam perhiasan[n 34] seperti nikel, tembaga, indium, dan kobalt dalam emas berwarna.[225] Perhiasan imitasi dan mainan anak mungkin terbuat dari logam berat, pada tingkat yang signifikan, seperti kromium, nikel, kadmium, atau timbal.[226]

Tembaga, seng, timah, dan timbal adalah logam yang secara mekanis lebih lemah namun memiliki sifat pencegahan korosi yang berguna. Sementara masing-masing akan bereaksi dengan udara, dihasilkan patina dari berbagai macam garam tembaga,[227] seng karbonat, timah oksida, atau campuran timbal oksida, karbonat, dan sulfat, memberikan sifat perlindungan yang berharga.[228] Oleh karena itu, tembaga dan timbal digunakan untuk, misalnya bahan atap;[229][n 35] seng bertindak sebagai zat anti korosi dalam baja galvanisir;[230] dan timah bertindak sebagai fungsi yang sama pada kaleng baja.[231]

Daya tahan dan ketahanan korosi besi dan kromium dapat ditingkatkan dengan penambahan gadolinium; hambatan rayapan nikel ditingkatkan dengan penambahan thorium. Telurium ditambahkan ke paduan tembaga dan baja untuk meningkatkan kemampuan mesin; dan untuk membuatnya lebih keras dan lebih tahan asam.[232]

Biologi dan kimia

A small colorless saucer holding a pale-yellow powder
Cerium(IV) oksida (sampel yang ditunjukkan di atas) digunakan sebagai katalis dalam oven swaresik.[233]

Efek biosida beberapa logam berat telah dikenal sejak zaman purba.[234] Platina, osmium, tembaga, rutenium, dan logam berat lainnya, termasuk arsenik, digunakan dalam perawatan anti kanker, atau menunjukkan potensi untuk itu.[235] Antimon (anti-protozoa), bismut (anti tukak), emas (anti artritis), dan besi (anti malaria), juga penting untuk pengobatan.[236] Tembaga, seng, perak, emas, atau raksa digunakan dalam formulasi antiseptik;[237] sejumlah kecil beberapa logam berat digunakan untuk mengendalikan pertumbuhan alga, misalnya, menara pendingin.[238] Bergantung pada penggunaan yang dimaksudkan sebagai pupuk atau biosida, agrokimia mungkin mengandung logam berat seperti kromium, kobalt, nikel, tembaga, seng, arsen, kadmium, raksa, atau timbal.[239]

Logam berat yang dipilih digunakan sebagai katalis dalam pengolahan bahan bakar (renium, misalnya), produksi karet dan serat sintetis (bismut), alat kontrol emisi (paladium), dan dalam oven swaresik (di mana cerium(IV) oksida di dinding oven semacam itu membantu mengoksidasi residu memasak berbasis karbon).[240] Dalam kimia sabun, logam berat membentuk sabun yang tidak larut yang digunakan dalam gemuk pelumas, pengering cat, dan fungisida (terlepas dari litium, logam alkali dan ion amonium yang membentuk sabun yang dapat larut).[241]

Pewarnaan dan optik

Small translucent, pink-coloured crystals a bit like the colour of candy floss
Neodimium sulfat (Nd), digunakan untuk mewarnai kaca[242]

Warna kaca, glazur keramik, cat, pigmen, dan plastik umumnya diproduksi dengan memasukkan logam berat (atau senyawanya) seperti kromium, mangan, kobalt, tembaga, seng, selenium, zirkonium, molibdenum, perak, timah, praseodimium, neodimium, erbium, tungsten, iridium, emas, timbal, atau uranium.[243] Tinta tattoo mungkin mengandung logam berat, seperti kromium, kobalt, nikel, dan tembaga.[244] Reflektivitas tinggi beberapa logam berat penting dalam konstruksi cermin, termasuk instrumen astronomi yang presisi. Reflektor lampu bergantung pada pantulan yang sangat baik dari film tipis rhodium.[245]

Elektronik, magnet, dan pencahayaan

A satellite image of what look like semi-regularly spaced swathes of black tiles set in a plain, surrounded by farmland and grass lands
Topaz Solar Farm, di selatan California, memiliki 9 juta modul fotovoltaik kadmium-tellurium seluas 25,6 kilometer persegi (9,5 mil persegi).

Logam berat atau senyawanya dapat ditemukan di komponen elektronik, elektroda, dan kabel serta panel surya di mana mereka dapat digunakan sebagai konduktor, semikonduktor, atau isolator. Bubuk molibdenum digunakan dalam tinta papan sirkuit.[246] Anoda titanium bersalut ruthenium(IV) oksida digunakan dalam industri produksi klorin.[247] Sistem kelistrikan rumah sebagian besar dihubungkan dengan kawat tembaga karena konduktivitasnya yang baik.[248] Perak dan emas digunakan dalam perangkat listrik dan elektronik, terutama pada tombol on/off, karena konduktivitas listriknya yang tinggi dan kapasitasnya untuk menahan atau meminimalkan pembentukan kotoran pada permukaannya.[249] Semikonduktor kadmium telurida dan galium arsenida digunakan untuk membuat panel surya. Hafnium oksida, isolator, digunakan sebagai pengontrol tegangan dalam mikrochip; tantalum oksida, isolator lain, digunakan pada kapasitor dalam ponsel.[250] Logam berat telah digunakan dalam baterai selama lebih dari 200 tahun, setidaknya sejak Alessandro Volta menemukan tumpukan volta tembaga dan peraknya pada tahun 1800.[251] Prometium, lantanum, dan raksa adalah contoh lebih lanjut yang ditemukan pada baterai atom, nickel-metal hidrida, dan baterai arloji.[252]

Magnet terbuat dari logam berat seperti mangan, besi, kobalt, nikel, niobium, bismut, praseodimium, neodimium, gadolinium, dan disprosium. Magnet neodimium adalah jenis magnet permanen paling kuat yang tersedia secara komersial. Mereka adalah komponen kunci, misalnya kunci pintu mobil, starter motor, pompa bahan bakar, dan power window.[253]

Logam berat digunakan di pencahayaan, laser, dan diode pancaran cahaya (light-emitting diode, LED). Tampilan layar datar menggabungkan film tipis penghantar listrik indium timah oksida. Lampu fluorescent bergantung pada uap raksa untuk beroperasi. Laser ruby menghasilkan sinar merah tajam dengan mengeksitasi atom kromium; lantanida juga banyak digunakan untuk laser. Galium, indium, dan arsen;[254] serta tembaga, iridium, dan platinum digunakan dalam LED (yang tiga terakhir dalam LED organik).[255]

Nuklir

A large glass bulb. Inside the bulb, at one end, is a fixed spindle. There is an arm attached to the spindle. At the end of the arm is a small protuberance. This is the cathode. At the other end of the bulb is a rotatable wide metal plate attached to a rotor mechanism which protrudes from the end of the bulb.
Sebuah tabung sinar-X dengan anoda putar, biasanya paduan tungsten-renium pada inti molibdenum yang didukung dengan grafit[256][n 36]

Penggunaan niché logam berat dengan nomor atom tinggi terdapat pada pencitraan diagnostik, mikroskopi elektron, dan teknik nuklir. Dalam pencitraan diagnostik, logam berat seperti kobalt atau tungsten membentuk bahan anoda yang dijumpai dalam tabung sinar-X.[259] Dalam mikroskopi elektron, logam berat seperti timbal, emas, paladium, platina, atau uranium digunakan untuk membuat salutan konduktif dan untuk memasukkan kerapatan elektron ke spesimen biologis dengan cara pewarnaan, pewarnaan negatif, atau deposisi vakum.[260] Dalam teknik nuklir, inti logam berat seperti kromium, besi, atau seng kadang-kadang ditembakkan pada target logam berat lainnya untuk menghasilkan unsur superberat;[261] logam berat juga digunakan sebagai target spalasi untuk produksi neutron[262] atau radioisotop seperti astatine (menggunakan timbal, bismut, thorium, atau uranium dalam kasus terakhir).[263]

Catatan

  1. ^ Kriteria yang digunakan adalah densitas:[2] (1) di atas 3,5 g/cm3; (2) di atas 7 g/cm3; berat atom: (3) > 22,98;[2] (4) > 40 (kecuali logam blok-s dan -f);[3] (5) > 200;[4] nomor atom: (6) > 20; (7) 21–92;[5] perilaku kimia: (8) United States Pharmacopeia;[6][7][8] (9) Definisi berdasarkan tabel periodik Hawkes (tidak termasuk lantanida dan aktinida);[9] dan (10) Klasifikasi biokimia Nieboer and Richardson.[10] Densitas unsur terutama dirujuk dari Emsley.[11] Digunakan prediksi densitas untuk At, Fr dan FmTs.[12] Densitas indikatif diturunkan untuk Fm, Md, No dan Lr berdasarkan berat atom mereka, estimasi jari-jari logam,[13] dan prediksi struktur kristal.[14] Berat atom dirujuk dari Emsley.,[11] dalam penutup belakang
  2. ^ Namun, metaloid dikeluarkan dari definisi berdasarkan tabel periodik Hawkes, dan ia memberi catatan "tidak perlu untuk menentukan apakah semilogam (yaitu metaloid) harus dimasukkan sebagai logam berat."[9]
  3. ^ Pengujian tidak spesifik untuk logam tertentu, tetapi dikatakan mampu sekurang-kurangnya mendeteksi Mo, Cu, Ag, Cd, Hg, Sn, Pb, As, Sb, dan Bi.[7] Bagaimanapun juga, ketika pengujian menggunakan hidrogen sulfida sebagai pereaksi, ia tidak dapat mendeteksi Th, Ti, Zr, Nb, Ta, atau Cr.[8]
  4. ^ Logam transisi dan pasca transisi yang tidak selalu membentuk kompleks berwarna adalah Sc dan Y di golongan 3;[20] Ag di golongan 11;[21] Zn dan Cd di golongan 12;[20][22] dan logam-logam golongan 1316.[23]
  5. ^ Sulfida dan hidroksida lantanida (Ln) tidak larut;[24] yang terakhir dapat diperoleh dari larutan akuatik garam Ln sebagai endapan gelatin berwarna;[25] dan kompleks Ln memiliki warna yang sama dengan ion akuanya (yang mayoritas berwarna).[26] Sulfida aktinida (An) mungkin larut atau tidak larut, tergantung penulisnya. Uranium monosulfida divalen tidak diserang oleh air mendidih.[27] Ion aktinida trivalen berperilaku mirip dengan ion lantanida trivalen, sehingga sulfidanya masih mungkin tidak larut tetapi hal ini tidak dinyatakan secara jelas.[28] Sulfida An tetravalen terdekomposisi,[29] tetapi Edelstein et al. menyatakan bahwa mereka dapat larut;[30] sementara Haynes menyatakan thorium(IV) sulfida tidak larut.[31] Di awal sejarah fisi nuklir, telah dinyatakan bahwa pengendapan dengan hidrogen sulfida adalah cara yang "luar biasa" efektif untuk mengisolasi dan mendeteksi unsur transuranium dalam larutan.[32] Dengan nada yang sama, Deschlag menulis bahwa unsur-unsur setelah uranium diperkirakan mempunyai sulfida tak larut yang analog dengan logam transisi baris ketiga. Tetapi, ia melanjutkan bahwa unsur setelah aktinium ditemukan memiliki sifat yang berbeda dari logam transisi dan menyatakan mereka tidak membentuk sulfida tak larut.[33] Namun, hidroksida An tidak larut[30] dan dapat diendapkan dari larutan akuatik garamnya.[34] Akhirnya, banyak kompleks An memiliki warna "dalam dan cerah".[35]
  6. ^ Unsur yang lebih berat yang dikenal sebagai metaloidGe; As, Sb; Se, Te, Po; At—memenuhi beberapa dari tiga definisi Hawkes. Seluruhnya memiliki sulfida tak larut[34][36] tetapi hanya Ge, Te, dan Po yang tampaknya memiliki hidroksida tak larut yang efektif.[37] Seluruh batang At dapat diperoleh sebagai endapan (sulfida) berwarna dari larutan akuatik garamnya;[34] astatin tampaknya mengendap dari larutannya dengan hidrogen sulfida tetapi, karena At tidak pernah disintesis dalam jumlah yang layak, warna endapat tidak diketahui.[36][38] Sebagai unsur blok-p, kompleks mereka biasanya tak berwarna.[39]
  7. ^ Terminologi kelas A dan B analog dengan terminologi "asam keras" dan "basa lunak" yang kadang-kadang digunakan untuk merujuk perilaku ion logam sistem anorganik.[41]
  8. ^ Be dan Al adalah pengecualian untuk tren umum ini. Mereka memiliki nilai elektronegativitas yang lebih tinggi.[42] Karena ukurannya yang relatif kecil, ion +2 dan +3 mereka memiliki kerapatan muatan yang tinggi, sehingga mempolarisasi awan elektron di sekitarnya. Hasil bersihnya adalah bahwa senyawa Be dan Al memiliki karakter kovalen.[43]
  9. ^ Google Scholar has recorded lebih dari 900 kutipan untuk makalah yang dimaksud.[45]
  10. ^ Jika Gmelin telah bekerja dengan ukuran sistem bobot imperial, mungkin dia memilih 300 lbs/ft3 sebagai cutoff logam ringan/beratnya dimana selenium (densitas 300,27 lbs/ft3) akan dibuat sebagai patokan, sementara 5 g/cm3 = 312,14 lbs/ft3.
  11. ^ Timbal, yang merupakan racun kumulatif, memiliki kelimpahan yang relatif tinggi karena penggunaan historisnya yang luas dan pembuangan yang disebabkan manusia ke lingkungan.[76]
  12. ^ Haynes menunjukkan jumlah <17 mg untuk timah[77]
  13. ^ Iyengar mencatat angka 5 mg untuk nikel;[78] Haynes menunjukkan jumlah 10 mg[77]
  14. ^ Mencakup 45 logam berat yang terjadi dalam jumlah kurang dari 10 mg masing-masing, termasuk As (7 mg), Mo (5), Co (1,5), dan Cr (1,4)[79]
  15. ^ Dari unsur-unsur yang umum dikenal sebagai metaloid, B dan Si dihitung sebagai non-logam; Ge, As, Sb, dan Te sebagai logam berat.
  16. ^ Ni, Cu, Zn, Se, Ag dan Sb terdaftar dalam Daftar Polutan Beracun yang diterbitkan oleh Pemerintah Amerika Serikat;[105] Mn, Co, dan Sn terdaftar dalam Inventaris Polutan Nasional yang diterbitkan oleh Pemerintah Australia.[106]
  17. ^ Tungsten bisa jadi logam berat beracun lainnya.[107]
  18. ^ Selenium logam berat esensial bagi mamalia yang paling beracun.[111]
  19. ^ Unsur renik yang memiliki kelimpahan setara atau kurang dari satu bagian per triliun (sebut saja Tc, Pm, Po, At, Ra, Ac, Pa, Np, dan Pu) tidak ditampilkan. Kelimpahan berasal dari Lide[123] dan Emsley;[124] sedangkan tipe keterjadian dari McQueen.[125]
  20. ^ Dalam beberapa kasus, misalnya dengan adanya sinar gamma energi tinggi atau dalam suatu lingkungan kaya hidrogen pada suhu sangat tinggi, inti subjek dapat mengalami kehilangan neutron atau menarik proton yang menghasilkan (relatif jarang) isotop yang kekurangan neutron.[130]
  21. ^ Pelontatan materi ketika dua bintang neutron bertabrakan dikaitkan dengan interaksi gaya Tidal, kemungkinan gangguan kerak bumi, dan guncangan akibat panas (itulah yang terjadi jika Anda meletakkan akselerator ke dalam mobil saat mesin masih dingin).[133]
  22. ^ Besi, kobalt, nikel, germanium dan timah juga merupakan siderophiles dari perspektif Bumi secara keseluruhan.[125]
  23. ^ Panas yang keluar dari inti padat bagian dalam diyakini bisa menghasilkan gerakan di bagian luar, yang terbuat dari paduan besi cair. Gerakan cairan ini menghasilkan arus listrik yang menimbulkan medan magnet.[144]
  24. ^ Logam berat yang terjadi secara alami dalam jumlah yang terlalu kecil untuk ditambang secara ekonomis (Tc, Pm, Po, At, Ac, Np dan Pu), diproduksi melalui transmutasi buatan.[146] Metode yang terakhir ini juga digunakan untuk menghasilkan logam berat dari americium dan seterusnya.[147]
  25. ^ Sulfida logam golongan 1 dan 2, serta aluminium, dihidrolisis oleh air;[162] skandium,[163] yttrium[164] dan titanium sulfida[165] tidak larut.
  26. ^ Misalnya, hidroksida kalium, rubidium, dan cesium memiliki kelarutan melebihi 100 gram per 100 gram air[167] sementara hidroksida alumium (0,0001)[168] dan skandium (<0,000 000 15 gram)[169] dianggap tidak dapat larut.
  27. ^ Berilium memiliki apa yang digambarkan sebagai titik leleh "tinggi" 1560 K; skandium dan titanium meleleh pada 1814 dan 1941 K.[174]
  28. ^ Seng adalah logam lunak dengan kekerasan Mohs 2,5;[175] kadmium dan timbal memiliki tingkat kekerasan lebih rendah masing-masing 2,0 and 1,5.[176] Seng memiliki titik lebur "rendah" pada 693&nbps;K; kadmium dan timbal masing-masing meleleh pada 595 dan 601 K.[177]
  29. ^ Beberapa kekerasan dan abstraksi detail diterapkan pada skema pemilahan untuk menjaga agar jumlah kategori tetap terjaga.
  30. ^ Fly fishing adalah teknik memancing dengan menggunakan umpan artifisial yang menyerupai lalat atau serangga
  31. ^ Kulit sebagian besar berubah menjadi hijau karena pembentukan patina pelindung yang terdiri dari antlerit (Cu), atakamit (Cu), brokantit (Cu), kupro oksida (Cu), dan tenorit (CuO).[209]
  32. ^ Untuk lantanida, ini adalah satu-satunya penggunaan struktural karena mereka terlalu reaktif, relatif mahal, dan cukup kuat.[221]
  33. ^ Weller[223] mengklasifikasikan logam koin sebagai logam berharga (misalnya: perak, emas, platina); logam berat berdaya tahan tinggi (nikel); logam berat berdaya tahan rendah (tembaga, besi, seng, timah, dan timbal); dan logam ringan (aluminium).
  34. ^ Emsley[224] memperkirakan kehilangan global enam ton emas per tahun karena cincin kawin 18 karat perlahan habis.
  35. ^ Kertas timbal yang terpapar kerasnya iklim industri dan pesisir akan bertahan berabad-abad[188]
  36. ^ Elektron yang menumbuk anoda tungsten menghasilkan sinar-X;[257] renium memberi ketahanan yang lebih baik kepada tungsten terhadap sengatan termal;[258] molibdenum dan grafit bertindak sebagai peredam panas. Molybdenum juga memiliki kepadatan hampir setengah dari tungsten sehingga mengurangi berat anoda.[256]

Sumber

Kutipan

  1. ^ Emsley 2011, hlm. 288; 374
  2. ^ a b c d e Duffus 2002, hlm. 798
  3. ^ a b Rand, Wells & McCarty 1995, hlm. 23
  4. ^ a b Baldwin & Marshall 1999, hlm. 267
  5. ^ a b Lyman 2003, hlm. 452
  6. ^ a b The United States Pharmacopeia 1985, hlm. 1189
  7. ^ a b Raghuram, Soma Raju & Sriramulu 2010, hlm. 15
  8. ^ a b Thorne & Roberts 1943, hlm. 534
  9. ^ a b c d Hawkes 1997
  10. ^ a b Nieboer & Richardson 1980, hlm. 4
  11. ^ a b Emsley 2011
  12. ^ Hoffman, Lee & Pershina 2011, hlm. 1691,1723; Bonchev & Kamenska 1981, hlm. 1182
  13. ^ Silva 2010, hlm. 1628, 1635, 1639, 1644
  14. ^ Fournier 1976, hlm. 243
  15. ^ a b c Vernon 2013, hlm. 1703
  16. ^ Morris 1992, hlm. 1001
  17. ^ Gorbachev, Zamyatnin & Lbov 1980, hlm. 5
  18. ^ a b c Duffus 2002, hlm. 797
  19. ^ Liens 2010, hlm. 1415
  20. ^ a b c Longo 1974, hlm. 683
  21. ^ Tomasik & Ratajewicz 1985, hlm. 433
  22. ^ a b Herron 2000, hlm. 511
  23. ^ a b Nathans 1963, hlm. 265
  24. ^ Topp 1965, hlm. 106: Schweitzer & Pesterfield 2010, hlm. 284
  25. ^ King 1995, hlm. 297; Mellor 1924, hlm. 628
  26. ^ Cotton 2006, hlm. 66
  27. ^ Albutt & Dell 1963, hlm. 1796
  28. ^ Wiberg 2001, hlm. 1722–1723
  29. ^ Wiberg 2001, hlm. 1724
  30. ^ a b Edelstein et al. 2010, hlm. 1796
  31. ^ Haynes 2015, hlm. 4–95
  32. ^ Weart 1983, hlm. 94
  33. ^ Deschlag 2011, hlm. 226
  34. ^ a b c Wulfsberg 2000, hlm. 209–211
  35. ^ Ahrland, Liljenzin & Rydberg 1973, hlm. 478
  36. ^ a b Korenman 1959, hlm. 1368
  37. ^ Yang, Jolly & O'Keefe 1977, hlm. 2980; Wiberg 2001, hlm. 592; Kolthoff & Elving 1964, hlm. 529
  38. ^ Close 2015, hlm. 78
  39. ^ Parish 1977, hlm. 89
  40. ^ a b Rainbow 1991, hlm. 416
  41. ^ Nieboer & Richardson 1980, hlm. 6–7
  42. ^ Lee 1996, hlm. 332; 364
  43. ^ Clugston & Flemming 2000, hlm. 294; 334, 336
  44. ^ Nieboer & Richardson 1980, hlm. 7
  45. ^ Nieboer & Richardson 1980
  46. ^ Hübner, Astin & Herbert 2010, hlm. 1511–1512
  47. ^ Järup & 2003, hlm. 168; Rasic-Milutinovic & Jovanovic 2013, hlm. 6; Wijayawardena, Megharaj & Naidu 2016, hlm. 176
  48. ^ Duffus 2002, hlm. 794–795; 800
  49. ^ Emsley 2011, hlm. 480
  50. ^ USEPA 1988, hlm. 1; Uden 2005, hlm. 347–348; DeZuane 1997, hlm. 93; Dev 2008, hlm. 2–3
  51. ^ a b Ikehata et al. 2015, hlm. 143
  52. ^ a b Podsiki 2008, hlm. 1
  53. ^ Emsley 2011, hlm. 106
  54. ^ Emsley 2011, hlm. 62
  55. ^ Chakhmouradian, Smith & Kynicky 2015, hlm. 456–457
  56. ^ Cotton 1997, hlm. ix; Ryan 2012, hlm. 369
  57. ^ Hermann, Hoffmann & Ashcroft 2013, hlm. 11604-1
  58. ^ Emsley 2011, hlm. 75
  59. ^ Gribbon 2016, hlm. x
  60. ^ Emsley 2011, hlm. 428–429; 414; Wiberg 2001, hlm. 527; Emsley 2011, hlm. 437; 21–22; 346–347; 408–409
  61. ^ Raymond 1984, hlm. 8–9
  62. ^ Chambers 1743: "Yang membedakan logam dari semua benda lainnya ... adalah beratnya ..."
  63. ^ Oxford English Dictionary 1989; Gordh & Headrick 2003, hlm. 753
  64. ^ Goldsmith 1982, hlm. 526
  65. ^ Habashi 2009, hlm. 31
  66. ^ Gmelin 1849, hlm. 2
  67. ^ Magee 1969, hlm. 14
  68. ^ Ridpath 2012, hlm. 208
  69. ^ Duffus 2002, hlm. 794
  70. ^ Leeper 1978, hlm. ix
  71. ^ Housecroft 2008, hlm. 802
  72. ^ Shaw, Sahu & Mishra 1999, hlm. 89; Martin & Coughtrey 1982, hlm. 2–3
  73. ^ Hübner, Astin & Herbert 2010, hlm. 1513
  74. ^ a b The Minerals, Metals and Materials Society 2016
  75. ^ Emsley 2011, hlm. 35; passim
  76. ^ Emsley 2011, hlm. 280, 286; Baird & Cann 2012, hlm. 549, 551
  77. ^ a b Haynes 2015, hlm. 7–48
  78. ^ Iyengar 1998, hlm. 553
  79. ^ Emsley 2011, hlm. 47; 331; 138; 133; passim
  80. ^ Nieboer & Richardson 1978, hlm. 2
  81. ^ Emsley 2011, hlm. 604; 31; 133; 358; 47; 475
  82. ^ Valkovic 1990, hlm. 214, 218
  83. ^ Emsley 2011, hlm. 331; 89; 552
  84. ^ Emsley 2011, hlm. 571
  85. ^ Emsley 2011, hlm. 24; passim
  86. ^ Venugopal & Luckey 1978, hlm. 307
  87. ^ Emsley 2011, hlm. 192; 197; 240; 120, 166, 188, 224, 269, 299, 423, 464, 549, 614; 559
  88. ^ Duffus 2002, hlm. 794; 799
  89. ^ Baird & Cann 2012, hlm. 519
  90. ^ Kozin & Hansen 2013, hlm. 80
  91. ^ Baird & Cann 2012, hlm. 519–520; 567; Rusyniak et al. 2010, hlm. 387
  92. ^ Di Maio 2001, hlm. 208
  93. ^ Perry & Vanderklein 1996, hlm. 208
  94. ^ Love 1998, hlm. 208
  95. ^ Hendrickson 2016, hlm. 42
  96. ^ Reyes 2007, hlm. 1, 20, 35–36
  97. ^ Emsley 2011, hlm. 311
  98. ^ Wiberg 2001, hlm. 1474, 1501
  99. ^ a b c d e f g h Tokar et al. 2013
  100. ^ Eisler 1993, hlm. 3, passim
  101. ^ Lemony 1997, hlm. 259; Ohlendorf 2003, hlm. 490
  102. ^ State Water Control Resources Board 1987, hlm. 63
  103. ^ Scott 1989, hlm. 107–108
  104. ^ International Antimony Association 2016
  105. ^ United States Government 2014
  106. ^ Australian Government 2016
  107. ^ United States Environmental Protection Agency 2014
  108. ^ Ong, Tan & Cheung 1997, hlm. 44
  109. ^ Emsley 2011, hlm. 146
  110. ^ Emsley 2011, hlm. 476
  111. ^ Selinger 1978, hlm. 369
  112. ^ Cole & Stuart 2000, hlm. 315
  113. ^ Clegg 2014
  114. ^ Emsley 2011, hlm. 240
  115. ^ Emsley 2011, hlm. 595
  116. ^ Stankovic & Stankovic 2013, hlm. 154–159
  117. ^ Bradl 2005, hlm. 15, 17–20
  118. ^ Harvey, Handley & Taylor 2015, hlm. 12276
  119. ^ Howell et al. 2012; Cole et al. 2011, hlm. 2589–2590
  120. ^ Amasawa et al. 2016, hlm. 95–101
  121. ^ Massarani 2015
  122. ^ Torrice 2016
  123. ^ a b c Lide 2004, hlm. 14–17
  124. ^ Emsley 2011, hlm. 29; passim
  125. ^ a b c McQueen 2009, hlm. 74
  126. ^ a b Cox 1997, hlm. 73–89
  127. ^ Cox 1997, hlm. 32, 63, 85
  128. ^ Podosek 2011, hlm. 482
  129. ^ Padmanabhan 2001, hlm. 234
  130. ^ Rehder 2010, hlm. 32, 33
  131. ^ Hofmann 2002, hlm. 23–24
  132. ^ Hadhazy 2016
  133. ^ Choptuik, Lehner & Pretorias 2015, hlm. 383
  134. ^ Cox 1997, hlm. 83, 91, 102–103
  135. ^ Berry & Mason 1959, hlm. 210–211; Rankin 2011, hlm. 69
  136. ^ Hartmann 2005, hlm. 197
  137. ^ Yousif 2007, hlm. 11–12
  138. ^ Berry & Mason 1959, hlm. 214
  139. ^ Yousif 2007, hlm. 11
  140. ^ Wiberg 2001, hlm. 1511
  141. ^ Emsley 2011, hlm. 403
  142. ^ Litasov & Shatskiy 2016, hlm. 27
  143. ^ Sanders 2003; Preuss 2011
  144. ^ Natural Resources Canada 2015
  145. ^ MacKay, MacKay & Henderson 2002, hlm. 203–204
  146. ^ Emsley 2011, hlm. 525–528; 428–429; 414; 57–58; 22; 346–347; 408–409; Keller, Wolf & Shani 2012, hlm. 98
  147. ^ Emsley 2011, hlm. 32 et seq.
  148. ^ Emsley 2011, hlm. 437
  149. ^ Chen & Huang 2006, hlm. 208; Crundwell et al. 2011, hlm. 411–413; Renner et al. 2012, hlm. 332; Seymour & O'Farrelly 2012, hlm. 10–12
  150. ^ Crundwell et al. 2011, hlm. 409
  151. ^ International Platinum Group Metals Association n.d., hlm. 3–4
  152. ^ McLemore 2008, hlm. 44
  153. ^ Wiberg 2001, hlm. 1277
  154. ^ Russell & Lee 2005, hlm. 437
  155. ^ McCurdy 1992, hlm. 186
  156. ^ von Zeerleder 1949, hlm. 68
  157. ^ Chawla & Chawla 2013, hlm. 55
  158. ^ von Gleich 2006, hlm. 3
  159. ^ Biddle & Bush 1949, hlm. 180
  160. ^ Magill 1992, hlm. 1380
  161. ^ a b Gidding 1973, hlm. 335–336
  162. ^ Wiberg 2001, hlm. 520
  163. ^ a b Schweitzer & Pesterfield 2010, hlm. 230
  164. ^ Macintyre 1994, hlm. 334
  165. ^ Booth 1957, hlm. 85; Haynes 2015, hlm. 4–96
  166. ^ Schweitzer & Pesterfield 2010, hlm. 230. Bagaimanapun, para penulis mencatat bahwa, "Sulfida ... Ga(III) dan Cr(III) cenderung larut dan/atau terdekomposisi di dalam air."
  167. ^ Sidgwick 1950, hlm. 96
  168. ^ Ondreička, Kortus & Ginter 1971, hlm. 294
  169. ^ Gschneidner 1975, hlm. 195
  170. ^ Hasan 1996, hlm. 251
  171. ^ Brady & Holum 1995, hlm. 825
  172. ^ Cotton 2006, hlm. 66; Ahrland, Liljenzin & Rydberg 1973, hlm. 478
  173. ^ Nieboer & Richardson 1980, hlm. 10
  174. ^ Russell & Lee 2005, hlm. 158, 434, 180
  175. ^ Schweitzer 2003, hlm. 603
  176. ^ Samsonov 1968, hlm. 432
  177. ^ Russell & Lee 2005, hlm. 338–339; 338; 411
  178. ^ Emsley 2011, hlm. 260; 401
  179. ^ Jones 2001, hlm. 3
  180. ^ Berea, Rodriguez-lbelo & Navarro 2016, hlm. 203
  181. ^ Alves, Berutti & Sánchez 2012, hlm. 94
  182. ^ Yadav, Antony & Subba Reddy 2012, hlm. 231
  183. ^ Masters 1981, hlm. 5
  184. ^ Wulfsberg 1987, hlm. 200–201
  185. ^ Bryson & Hammond 2005, hlm. 120 (high electron density); Frommer & Stabulas-Savage 2014, hlm. 69–70 (high atomic number)
  186. ^ Landis, Sofield & Yu 2011, hlm. 269
  187. ^ Prieto 2011, hlm. 10; Pickering 1991, hlm. 5–6, 17
  188. ^ a b Emsley 2011, hlm. 286
  189. ^ Berger & Bruning 1979, hlm. 173
  190. ^ Jackson & Summitt 2006, hlm. 10, 13
  191. ^ Shedd 2002, hlm. 80.5; Kantra 2001, hlm. 10
  192. ^ Spolek 2007, hlm. 239
  193. ^ White 2010, hlm. 139
  194. ^ Dapena & Teves 1982, hlm. 78
  195. ^ Burkett 2010, hlm. 80
  196. ^ a b Moore & Ramamoorthy 1984, hlm. 102
  197. ^ a b National Materials Advisory Board 1973, hlm. 58
  198. ^ Livesey 2012, hlm. 57
  199. ^ VanGelder 2014, hlm. 354, 801
  200. ^ National Materials Advisory Board 1971, hlm. 35–37
  201. ^ Rockhoff 2012, hlm. 314
  202. ^ Russell & Lee 2005, hlm. 16, 96
  203. ^ Morstein 2005, hlm. 129
  204. ^ Russell & Lee 2005, hlm. 218–219
  205. ^ Lach et al. 2015; Di Maio 2016, hlm. 154
  206. ^ Preschel 2005; Guandalini et al. 2011, hlm. 488
  207. ^ Scoullos et al. 2001, hlm. 315; Ariel, Barta & Brandon 1973, hlm. 126
  208. ^ Wingerson 1986, hlm. 35
  209. ^ Matyi & Baboian 1986, hlm. 299; Livingston 1991, hlm. 1401, 1407
  210. ^ Casey 1993, hlm. 156
  211. ^ a b c Bradl 2005, hlm. 25
  212. ^ Kumar, Srivastava & Srivastava 1994, hlm. 259
  213. ^ Nzierżanowski & Gawroński 2012, hlm. 42
  214. ^ Pacheco-Torgal, Jalali & Fucic 2012, hlm. 283–294; 297–333
  215. ^ Venner et al. 2004, hlm. 124
  216. ^ Technical Publications 1958, hlm. 235:"Berikut adalah pemotong logam keras yang kasar ... untuk memotong ... hingga ... gembok, kisi baja dan logam berat lainnya."
  217. ^ Naja & Volesky 2009, hlm. 41
  218. ^ Department of the Navy 2009, hlm. 3.3–13
  219. ^ Rebhandl et al. 2007, hlm. 1729
  220. ^ Greenberg & Patterson 2008, hlm. 239
  221. ^ Russell & Lee 2005, hlm. 437, 441
  222. ^ Roe & Roe 1992
  223. ^ Weller 1976, hlm. 4
  224. ^ Emsley 2011, hlm. 208
  225. ^ Emsley 2011, hlm. 206
  226. ^ Guney & Zagury 2012, hlm. 1238; Cui et al. 2015, hlm. 77
  227. ^ Brephol & McCreight 2001, hlm. 15
  228. ^ Russell & Lee 2005, hlm. 337, 404, 411
  229. ^ Emsley 2011, hlm. 141; 286
  230. ^ Emsley 2011, hlm. 625
  231. ^ Emsley 2011, hlm. 555, 557
  232. ^ Emsley 2011, hlm. 531
  233. ^ Emsley 2011, hlm. 123
  234. ^ Weber & Rutula 2001, hlm. 415
  235. ^ Dunn 2009; Bonetti et al. 2009, hlm. 1, 84, 201
  236. ^ Desoize 2004, hlm. 1529
  237. ^ Atlas 1986, hlm. 359; Lima et al. 2013, hlm. 1
  238. ^ Volesky 1990, hlm. 174
  239. ^ Nakbanpote, Meesungnoen & Prasad 2016, hlm. 180
  240. ^ Emsley 2011, hlm. 447; 74; 384; 123
  241. ^ Elliot 1946, hlm. 11; Warth 1956, hlm. 571
  242. ^ McColm 1994, hlm. 215
  243. ^ Emsley 2011, hlm. 135; 313; 141; 495; 626; 479; 630; 334; 495; 556; 424; 339; 169; 571; 252; 205; 286; 599
  244. ^ Everts 2016
  245. ^ Emsley 2011, hlm. 450
  246. ^ Emsley 2011, hlm. 334
  247. ^ Emsley 2011, hlm. 459
  248. ^ Moselle 2004, hlm. 409–410
  249. ^ Russell & Lee 2005, hlm. 323
  250. ^ Emsley 2011, hlm. 212
  251. ^ Tretkoff 2006
  252. ^ Emsley 2011, hlm. 428; 276; 326–327
  253. ^ Emsley 2011, hlm. 73; 141; 141; 141; 355; 73; 424; 340; 189; 189
  254. ^ Emsley 2011, hlm. 192; 242; 194
  255. ^ Baranoff 2015, hlm. 80; Wong et al. 2015, hlm. 6535
  256. ^ a b Ball, Moore & Turner 2008, hlm. 177
  257. ^ Ball, Moore & Turner 2008, hlm. 248–249, 255
  258. ^ Russell & Lee 2005, hlm. 238
  259. ^ Tisza 2001, hlm. 73
  260. ^ Chandler & Roberson 2009, hlm. 47, 367–369, 373; Ismail, Khulbe & Matsuura 2015, hlm. 302
  261. ^ Ebbing & Gammon 2017, hlm. 695
  262. ^ Pan & Dai 2015, hlm. 69
  263. ^ Brown 1987, hlm. 48

Referensi

Bacaan lebih lanjut

Definisi dan penggunaan

Toksisitas dan peran biologis

  • Baird C. & Cann M. (2012), "12, Toxic heavy metals", Environmental Chemistry (edisi ke-5th), W. H. Freeman and Company, New York, ISBN 1-4292-7704-1 . Membahas penggunaan, toksisitas, dan penyebaran Hg, Pb, Cd, As, dan Cr.
  • Nieboer E. & Richardson D.H.S. (1980), "The replacement of the nondescript term 'heavy metals' by a biologically and chemically significant classification of metal ions", Environmental Pollution Series B, Chemical and Physical, 1 (1): 3–26, doi:10.1016/0143-148X(80)90017-8 . Makalah yang banyak dikutip, fokus pada peran biologis logam berat.

Pembentukan

Penggunaan

  • Koehler C.S.W. (2001), "Heavy metal medicine", Chemistry Chronicles, American Chemical Society, diakses tanggal 11 July 2016 
  • Morowitz N. (2006), "The heavy metals", Modern Marvels, HistoryChannel.com, season 12 (episode 14) 
  • Öhrström L. (24 September 2014), "Tantalum oxide", Chemistry World, diakses tanggal 4 October 2016 . Penulis menjelaskan bagaimana tantalum(V) oksida menghancurkan ponsel berukuran batu bata. Juga tersedia sebagai podcast.

Pranala luar