Lompat ke isi

Poligon: Perbedaan antara revisi

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Konten dihapus Konten ditambahkan
+yunani -wiktionary
123569yuuift (bicara | kontrib)
Menambahkan bagian
Tag: Suntingan perangkat seluler Suntingan peramban seluler Suntingan seluler lanjutan
Baris 3: Baris 3:
[[Berkas:Polygon types.svg|jmpl|Beberapa macam poligon yang lain.]]
[[Berkas:Polygon types.svg|jmpl|Beberapa macam poligon yang lain.]]


'''Poligon''' (secara literal "banyak sudut", dari [[Bahasa Yunani Kuno]] "poly" ''banyak'' + "gon" ''sudut'') merupakan bangun datar yang terdiri dari [[Garis (geometri)|garis]] lurus yang bergabung untuk membentuk [[Rantai poligon|rantai]] tertutup atau [[sirkuit]].
'''Poligon''' ({{IPAc-en|ˈ|p|ɒ|l|ɪ|ɡ|ɒ|n}})(secara literal "banyak sudut", dari [[Bahasa Yunani Kuno]] "poly" ''banyak'' + "gon" ''sudut'') merupakan bangun datar yang terdiri dari [[Garis (geometri)|garis]] lurus yang bergabung untuk membentuk [[Rantai poligon|rantai]] tertutup atau [[sirkuit]].

== Etimologi ==
Kata '' poligon '' berasal dari kata sifat [[bahasa Yunani|Yunani]] πολύς (''polús'') "banyak", "banyak" dan γωνία (''gōnía'') "sudut" atau "sudut ". Hal itu telah disarankan γόνυ (''gónu'') "knee" mungkin asal dari ''gon''.<ref>{{cite book|title=Sebuah teknologi etimologi universal baru, dan kamus pengucapan bahasa Inggris |first1=John |last1=Craig |publisher=Oxford University |year=1849 |page=404 |url=https://books.google.com/books?id=t1SS5S9IBqUC}} [https://books.google.com/books?id=t1SS5S9IBqUC&pg=PA404 Extract of p. 404]</ref>

==Klasifikasi==
[[Berkas:Polygon types.svg|thumb|right|300px|Beberapa jenis poligon]]

===Jumlah sisi===
Poligon diklasifikasikan berdasarkan jumlah sisinya. Lihat [[#Penamaan|tabel di bawah]].

===Convexity dan non-convexity===
Poligon dapat dicirikan oleh konveksitas atau jenis non-konveksitasnya:
* [[poligon cembung|Cembung]]: garis apa pun yang ditarik melalui poligon (dan tidak bersinggungan dengan tepi atau sudut) memenuhi batasnya tepat dua kali. Akibatnya, semua sudut interiornya kurang dari 180 °. Secara ekivalen, setiap segmen garis dengan titik-titik ujung pada batas hanya melewati titik-titik interior di antara titik-titik ujungnya.
* Non-cembung: sebuah garis dapat ditemukan yang memenuhi batasnya lebih dari dua kali. Secara ekivalen, terdapat ruas garis antara dua titik batas yang melewati poligon.
* [[poligon sederhana|Sederhana]]: batas poligon tidak memotong dirinya sendiri. Semua poligon cembung sederhana.
* [[Poligon cekung|Cekung]]: Tidak cembung dan sederhana. Setidaknya ada satu sudut interior yang lebih besar dari 180°.
* [[Poligon berbentuk bintang|Berbentuk bintang]]: keseluruhan interior terlihat dari setidaknya satu titik, tanpa melewati tepi apa pun. Poligon harus sederhana, dan mungkin cembung atau cekung. Semua poligon cembung berbentuk bintang.
* [[daftar poligon tidak beraturan|Tidak beraturan]]: batas poligon tidak beraturan. Istilah ''kompleks'' terkadang digunakan berbeda dengan ''sederhana'', tetapi penggunaan ini berisiko menimbulkan kebingungan dengan gagasan ''[[Polytope kompleks|poligon kompleks]]'' sebagai salah satu yang ada di bidang kompleks [[ruang Hilbert|Hilbert]] yang terdiri dari dua [[bilangan kompleks|kompleks]].
* [[Poligon Bintang]]: poligon tidak beraturan secara teratur. Poligon tidak boleh berbentuk bintang dan bintang.

===Kesetaraan dan simetri===
* [[Poligon Equiangular|Equiangular]]: semua sudut sudut sama.
* [[Poligon siklik|Berhubung dgn putaran]]: semua sudut terletak pada satu [[lingkaran]], yang disebut [[sirkit]].
* Isogonal atau [[simpul-transitif]]: semua sudut berada dalam [[orbit simetri]] yang sama. Poligon juga berbentuk siklik dan sama.
* [[Poligon sama sisi|Sama sisi]]: semua sisi memiliki panjang yang sama. Poligon tidak harus cembung.
* [[Poligon tangensial|Tangensial]]: semua sisi bersinggungan dengan [[lingkaran bertuliskan]].
* Isotoxal atau [[tepi-transitif]]: semua sisi berada dalam [[orbit simetri]] yang sama. Poligon juga sama sisi dan tangensial.
* [[Poligon beraturan|Reguler]]: poligon tersebut adalah ''isogonal'' dan ''isotoxal''. Secara ekuivalen, ini adalah ''siklik'' dan ''sama sisi'', atau keduanya ''sama sisi'' dan ''sama dengan''. Reguler non-cembung''.

===Miscellaneous===
* [[Poligon bujursangkar|Bujursangkar]]: sisi-sisi poligon bertemu pada sudut siku-siku, yaitu semua sudut interiornya 90 atau 270 derajat.
* [[Poligon Monoton|Monoton]] terhadap garis tertentu ''L'': setiap garis [[Ortogonal (geometri)|ortogonal]] ke L memotong poligon tidak lebih dari dua kali.

==Properti dan rumus==
[[Geometri euklides]] diasumsikan seluruhnya.

===Sudut===
Poligon apa pun memiliki banyak sudut karena memiliki banyak sisi. Setiap sudut memiliki beberapa sudut. Dua hal terpenting adalah:
* '''[[Sudut interior]]''' – Jumlah dari sudut interior huruf ''n''-gon adalah {{nowrap|(''n'' − 2)[[Pi|π]]}} [[radian]] atau {{nowrap|(''n'' − 2) × 180}} [[derajat (sudut)|derajat]]. Hal ini karena setiap sederhana ''n''-gon (memiliki sisi ''n'') dapat dianggap terdiri dari {{nowrap|('' n ''-2)}} segitiga, masing-masing memiliki jumlah sudut π radian atau 180 derajat. Ukuran setiap sudut interior cembung biasa ''n''-gon adalah <math>\left(1-\tfrac{2}{n}\right)\pi</math> radian atau <math>180-\tfrac{360}{n}</math> derajat. Sudut interior [[poligon bintang]] beraturan pertama kali dipelajari oleh Poinsot, dalam makalah yang sama di mana ia menjelaskan empat [[Polihedron Kepler–Poinsot|polihedra bintang biasa]]: sebagai <math>\tfrac{p}{q}</math>-gon (a ''p''-gon dengan kepadatan pusat ''q''), setiap sudut interior <math>\tfrac{\pi(p-2q)}{p}</math> radian atau <math>\tfrac{180(p-2q)}{p}</math> derajat.<ref>{{cite book |last=Kappraff |first=Jay |title=Luar biasa: tur berpemandu melintasi alam, mitos, dan angka |publisher=World Scientific |year=2002 |page=258 |isbn= 978-981-02-4702-7 |url=https://books.google.com/books?id=vAfBrK678_kC&pg=PA256&dq=star+polygon}}</ref>
* '''[[Sudut eksterior]]''' – Sudut eksterior adalah [[sudut tambahan]] ke sudut interior. Menelusuri sekitar cembung ''n''-gon, sudut "belok" di suatu sudut adalah sudut luar atau luar. Menelusuri seluruh poligon membuat satu [[Putaran (geometri)|putaran]] penuh, jadi jumlah sudut luar harus 360 °. Argumen ini dapat digeneralisasikan menjadi poligon sederhana yang cekung, bila sudut luar yang berbelok ke arah berlawanan dikurangi dari total putaran. Menelusuri sekitar ''n''-gon secara umum, jumlah dari sudut luar (jumlah total yang berputar pada simpul) dapat berupa kelipatan bilangan bulat ''d'' dari 360°, misalnya 720° untuk [[pentagram]] dan 0° untuk sudut "delapan" atau [[antiparallelogram]], dengan ''d'' adalah massa jenis atau sifat starriness poligon. Lihat juga [[orbit (dinamika)]].

===Luas===
[[Berkas:Polygon vertex labels.svg|thumb|320px|right|Koordinat segi lima non-cembung.]]

Pada bagian ini, simpul dari poligon yang sedang dipertimbangkan akan diambil <math>(x_0, y_0), (x_1, y_1), \ldots, (x_{n - 1}, y_{n - 1})</math> dalam urutan. Untuk kemudahan dalam beberapa rumus, notasi {{math|1=(''x<sub>n</sub>'', ''y<sub>n</sub>'') = (''x''<sub>0</sub>, ''y''<sub>0</sub>)}} juga akan digunakan.

Jika poligon tidak berpotongan sendiri (yaitu, [[poligon sederhana|sederhana]]), tanda [[luas (geometri)|luas]] adalah
:<math>L = \frac{1}{2} \sum_{i = 0}^{n - 1}( x_i y_{i + 1} - x_{i + 1} y_i) \quad \text {dimana } x_{n}=x_{0} \text{ dan } y_n=y_{0}, </math>
atau, menggunakan [[determinan]]
:<math>16 L^{2} = \sum_{i=0}^{n-1} \sum_{j=0}^{n-1} \begin{vmatrix} Q_{i,j} & Q_{i,j+1} \\
Q_{i+1,j} & Q_{i+1,j+1} \end{vmatrix} , </math>
dimana <math> Q_{i,j} </math> adalah jarak kuadrat antara <math>(x_i, y_i)</math> dan <math>(x_j, y_j).</math> <ref>B.Sz. Nagy, L. Rédey: Eine Verallgemeinerung der Inhaltsformel von Heron. Publ.
Math. Debrecen 1, 42–50 (1949)</ref><ref>{{cite web
|url = http://www.seas.upenn.edu/~sys502/extra_materials/Polygon%20Area%20and%20Centroid.pdf
|title = Menghitung Luas Dan Sentroid Poligon
|last = Bourke
|first = Paul
|date = Juli 1988
|work =
|publisher =
|accessdate = 6 Feb 2013
}}
</ref>

Luas bertanda tergantung pada urutan simpul dan [[orientasi (ruang vektor)|orientasi]] dari bidang. Biasanya, orientasi positif ditentukan oleh rotasi (berlawanan arah jarum jam) yang memetakan positif {{mvar|x}}-sumbu ke positif {{mvar|y}}-sumbu. Jika simpul diurutkan berlawanan arah jarum jam (yaitu, menurut orientasi positif), luas yang ditandatangani positif; jika tidak, itu negatif. Dalam kedua kasus tersebut, rumus luasnya benar di [[nilai absolut]]. Hal tersebut biasanya disebut [[rumus tali sepatu]] atau rumus Surveyor.<ref>{{cite journal |author=Bart Braden |title=Formula Luas Surveyor |journal=The College Mathematics Journal |volume=17 |issue=4 |year=1986 |pages=326–337 |url=http://www.maa.org/pubs/Calc_articles/ma063.pdf|archive-url=https://web.archive.org/web/20121107190918/http://www.maa.org/pubs/Calc_articles/ma063.pdf|archive-date=2012-11-07 |doi=10.2307/2686282}}</ref>

Luas ''L'' poligon sederhana juga dapat dihitung jika panjang sisinya, ''a''<sub>1</sub>, ''a''<sub>2</sub>, ..., ''a<sub>n</sub>'' dan [[sudut eksterior]], ''θ''<sub>1</sub>, ''θ''<sub>2</sub>, ..., ''θ<sub>n</sub>'' diketahui, dari:
:<math>\begin{align}L = \frac12 ( a_1[a_2 \sin(\theta_1) + a_3 \sin(\theta_1 + \theta_2) + \cdots + a_{n-1} \sin(\theta_1 + \theta_2 + \cdots + \theta_{n-2})] \\
{} + a_2[a_3 \sin(\theta_2) + a_4 \sin(\theta_2 + \theta_3) + \cdots + a_{n-1} \sin(\theta_2 + \cdots + \theta_{n-2})] \\
{} + \cdots + a_{n-2}[a_{n-1} \sin(\theta_{n-2})] ). \end{align}</math>
Rumusnya dijelaskan oleh Lopshits pada tahun 1963.<ref name="lopshits">{{cite book |title=Perhitungan bidang angka berorientasi |author=A.M. Lopshits |publisher=D C Heath and Company: Boston, MA |others=translators: J Massalski and C Mills, Jr. |year=1963}}</ref>

Bila poligon dapat digambar pada grid yang berjarak sama sehingga semua simpulnya adalah titik grid, [[Teorema Pilih]] memberikan rumus sederhana untuk luas poligon berdasarkan jumlah interior: angka sebelumnya ditambah setengah angka terakhir, minus 1.

In every polygon with perimeter ''p'' and area ''A '', the [[isoperimetric inequality]] <math>p^2 > 4\pi A</math> holds.<ref>[http://forumgeom.fau.edu/FG2002volume2/FG200215.pdf Dergiades, Nikolaos, "An elementary proof of the isoperimetric inequality", ''Forum Mathematicorum'' 2, 2002, 129–130.]</ref>

Untuk dua poligon sederhana yang luasnya sama, [[Teorema Bolyai–Gerwien]] menyatakan bahwa poligon pertama dapat dipotong menjadi potongan poligonal yang dapat dipasang kembali untuk membentuk poligon kedua.

Panjang sisi poligon secara umum tidak menentukan luasnya.<ref>Robbins, "Poligon tertulis dalam lingkaran," ''American Mathematical Monthly'' 102, June–July 1995.</ref> Namun, jika poligonnya siklik maka sisi menentukan luasnya.<ref>{{cite journal|last=Pak|first=Igor|authorlink=Igor Pak|doi=10.1016/j.aam.2004.08.006|issue=4|journal=[[Advances in Applied Mathematics]]|mr=2128993|pages=690–696|title=Area poligon siklik: kemajuan terbaru pada dugaan Robbins|volume=34|year=2005|arxiv=math/0408104}}</ref> <!-->Of all ''n''-gons with given side lengths, the one with the largest area is cyclic. Of all ''n''-gons with a given perimeter, the one with the largest area is regular (and therefore cyclic)-->.<ref>Chakerian, G. D. "Tampilan Geometri yang Terdistorsi." Ch. 7 in ''Plum Matematika'' (R. Honsberger, editor). Washington, DC: Asosiasi Matematika Amerika, 1979: 147.</ref>

====Poligon beraturan====
Banyak rumus khusus yang diterapkan pada bidang [[poligon beraturan]].

Luas poligon beraturan diberikan dalam radius ''r'' dari [[lingkaran tertulis]] dan kelilingnya ''p'' oleh
:<math>L = \tfrac{1}{2} \cdot p \cdot r.</math>
Jari-jari ini juga disebut [[apotema]] dan sering direpresentasikan sebagai ''a''.

Luas beraturan ''n''-gon dengan sisi yang tertulis dalam lingkaran satuan tersebut
:<math>L = \frac{ns}{4} \sqrt{4-s^{2}}.</math>

Luas sebuah ''n''-gon dalam hal jari-jari ''R'' dari [[lingkaran berbatas]] dan kelilingnya ''p'' diberikan oleh
:<math>L = \frac {R}{2} \cdot p \cdot \sqrt{1- \tfrac{p^{2}}{4n^{2}R^{2}}}.</math>

Luas sebuah ''n'' beraturan-gon tertulis dalam lingkaran jari-jari satuan, dengan sisi ''s'' dan sudut interior <math>\alpha,</math> juga dapat dinyatakan secara trigonometri sebagai
:<math>A = \frac{ns^{2}}{4}\cot \frac{\pi}{n} = \frac{ns^{2}}{4}\cot\frac{\alpha}{n-2}=n \cdot \sin \frac{\pi}{n} \cdot \cos \frac{\pi}{n} = n \cdot \sin \frac{\alpha}{n-2} \cdot \cos \frac{\alpha}{n-2}.</math>
<!--
<!--====Self-intersecting====
The area of a [[Complex polygon|self-intersecting polygon]] can be defined in two different ways, giving different answers:
* Using the formulas for simple polygons, we allow that particular regions within the polygon may have their area multiplied by a factor which we call the ''density'' of the region. For example, the central convex pentagon in the center of a pentagram has density 2. The two triangular regions of a cross-quadrilateral (like a figure 8) have opposite-signed densities, and adding their areas together can give a total area of zero for the whole figure.<ref>{{cite journal|url=http://dynamicmathematicslearning.com/crossed-quad-area.pdf|title=Slaying a geometrical 'Monster': finding the area of a crossed Quadrilateral|last=De Villiers|first=Michael|journal=Learning and Teaching Mathematics|volume=2015|issue=18|date=January 2015|pages=23–28}}</ref>
* Considering the enclosed regions as point sets, we can find the area of the enclosed point set. This corresponds to the area of the plane covered by the polygon or to the area of one or more simple polygons having the same outline as the self-intersecting one. In the case of the cross-quadrilateral, it is treated as two simple triangles.{{citation needed|date=February 2019}}-->

===Centroid===
Menggunakan konvensi yang sama untuk koordinat puncak seperti pada bagian sebelumnya, koordinat dari pusat massa dari poligon sederhana yang solid adalah
:<math>C_x = \frac{1}{6 A} \sum_{i = 0}^{n - 1} (x_i + x_{i + 1}) (x_i y_{i + 1} - x_{i + 1} y_i), </math>
:<math>C_y = \frac{1}{6 A} \sum_{i = 0}^{n - 1} (y_i + y_{i + 1}) (x_i y_{i + 1} - x_{i + 1} y_i).</math>
Dalam rumus ini, nilai area yang ditandatangani <math>L</math> harus digunakan.

<!--For [[triangle]]s ({{math|1=''n'' = 3}}), the centroids of the vertices and of the solid shape are the same, but, in general, this is not true for {{math|''n'' > 3}}. The [[centroid]] of the vertex set of a polygon with {{mvar|n}} vertices has the coordinates
:<math>c_x=\frac 1n \sum_{i = 0}^{n - 1}x_i,</math>
:<math>c_y=\frac 1n \sum_{i = 0}^{n - 1}y_i.</math>-->

==Generalisasi==

<!--The idea of a polygon has been generalized in various ways. Some of the more important include:
* A [[spherical polygon]] is a circuit of arcs of great circles (sides) and vertices on the surface of a sphere. It allows the [[digon]], a polygon having only two sides and two corners, which is impossible in a flat plane. Spherical polygons play an important role in [[cartography]] (map making) and in [[Wythoff's construction]] of the [[uniform polyhedra]].
* A [[skew polygon]] does not lie in a flat plane, but zigzags in three (or more) dimensions. The [[Petrie polygon]]s of the regular polytopes are well known examples.
* An [[apeirogon]] is an infinite sequence of sides and angles, which is not closed but has no ends because it extends indefinitely in both directions.
* A [[skew apeirogon]] is an infinite sequence of sides and angles that do not lie in a flat plane.
* A [[Complex polytope|complex polygon]] is a [[configuration (polytope)|configuration]] analogous to an ordinary polygon, which exists in the [[complex plane]] of two [[real number|real]] and two [[imaginary number|imaginary]] dimensions.
* An [[abstract polytope|abstract polygon]] is an algebraic [[partially ordered set]] representing the various elements (sides, vertices, etc.) and their connectivity. A real geometric polygon is said to be a ''realization'' of the associated abstract polygon. Depending on the mapping, all the generalizations described here can be realized.
* A [[polyhedron]] is a three-dimensional solid bounded by flat polygonal faces, analogous to a polygon in two dimensions. The corresponding shapes in four or higher dimensions are called [[polytope]]s.<ref>Coxeter (3rd Ed 1973)</ref> (In other conventions, the words ''polyhedron'' and ''polytope'' are used in any dimension, with the distinction between the two that a polytope is necessarily bounded.<ref>[[Günter Ziegler]] (1995). "Lectures on Polytopes". Springer ''Graduate Texts in Mathematics'', {{isbn|978-0-387-94365-7}}. p. 4.</ref>)-->


== Nama dan jenis ==
== Nama dan jenis ==

Revisi per 7 September 2020 06.15

Berbagai macam poligon.
Beberapa macam poligon yang lain.

Poligon (/ˈpɒlɪɡɒn/)(secara literal "banyak sudut", dari Bahasa Yunani Kuno "poly" banyak + "gon" sudut) merupakan bangun datar yang terdiri dari garis lurus yang bergabung untuk membentuk rantai tertutup atau sirkuit.

Etimologi

Kata poligon berasal dari kata sifat Yunani πολύς (polús) "banyak", "banyak" dan γωνία (gōnía) "sudut" atau "sudut ". Hal itu telah disarankan γόνυ (gónu) "knee" mungkin asal dari gon.[1]

Klasifikasi

Beberapa jenis poligon

Jumlah sisi

Poligon diklasifikasikan berdasarkan jumlah sisinya. Lihat tabel di bawah.

Convexity dan non-convexity

Poligon dapat dicirikan oleh konveksitas atau jenis non-konveksitasnya:

  • Cembung: garis apa pun yang ditarik melalui poligon (dan tidak bersinggungan dengan tepi atau sudut) memenuhi batasnya tepat dua kali. Akibatnya, semua sudut interiornya kurang dari 180 °. Secara ekivalen, setiap segmen garis dengan titik-titik ujung pada batas hanya melewati titik-titik interior di antara titik-titik ujungnya.
  • Non-cembung: sebuah garis dapat ditemukan yang memenuhi batasnya lebih dari dua kali. Secara ekivalen, terdapat ruas garis antara dua titik batas yang melewati poligon.
  • Sederhana: batas poligon tidak memotong dirinya sendiri. Semua poligon cembung sederhana.
  • Cekung: Tidak cembung dan sederhana. Setidaknya ada satu sudut interior yang lebih besar dari 180°.
  • Berbentuk bintang: keseluruhan interior terlihat dari setidaknya satu titik, tanpa melewati tepi apa pun. Poligon harus sederhana, dan mungkin cembung atau cekung. Semua poligon cembung berbentuk bintang.
  • Tidak beraturan: batas poligon tidak beraturan. Istilah kompleks terkadang digunakan berbeda dengan sederhana, tetapi penggunaan ini berisiko menimbulkan kebingungan dengan gagasan poligon kompleks sebagai salah satu yang ada di bidang kompleks Hilbert yang terdiri dari dua kompleks.
  • Poligon Bintang: poligon tidak beraturan secara teratur. Poligon tidak boleh berbentuk bintang dan bintang.

Kesetaraan dan simetri

Miscellaneous

  • Bujursangkar: sisi-sisi poligon bertemu pada sudut siku-siku, yaitu semua sudut interiornya 90 atau 270 derajat.
  • Monoton terhadap garis tertentu L: setiap garis ortogonal ke L memotong poligon tidak lebih dari dua kali.

Properti dan rumus

Geometri euklides diasumsikan seluruhnya.

Sudut

Poligon apa pun memiliki banyak sudut karena memiliki banyak sisi. Setiap sudut memiliki beberapa sudut. Dua hal terpenting adalah:

  • Sudut interior – Jumlah dari sudut interior huruf n-gon adalah (n − 2)π radian atau (n − 2) × 180 derajat. Hal ini karena setiap sederhana n-gon (memiliki sisi n) dapat dianggap terdiri dari ( n -2) segitiga, masing-masing memiliki jumlah sudut π radian atau 180 derajat. Ukuran setiap sudut interior cembung biasa n-gon adalah radian atau derajat. Sudut interior poligon bintang beraturan pertama kali dipelajari oleh Poinsot, dalam makalah yang sama di mana ia menjelaskan empat polihedra bintang biasa: sebagai -gon (a p-gon dengan kepadatan pusat q), setiap sudut interior radian atau derajat.[2]
  • Sudut eksterior – Sudut eksterior adalah sudut tambahan ke sudut interior. Menelusuri sekitar cembung n-gon, sudut "belok" di suatu sudut adalah sudut luar atau luar. Menelusuri seluruh poligon membuat satu putaran penuh, jadi jumlah sudut luar harus 360 °. Argumen ini dapat digeneralisasikan menjadi poligon sederhana yang cekung, bila sudut luar yang berbelok ke arah berlawanan dikurangi dari total putaran. Menelusuri sekitar n-gon secara umum, jumlah dari sudut luar (jumlah total yang berputar pada simpul) dapat berupa kelipatan bilangan bulat d dari 360°, misalnya 720° untuk pentagram dan 0° untuk sudut "delapan" atau antiparallelogram, dengan d adalah massa jenis atau sifat starriness poligon. Lihat juga orbit (dinamika).

Luas

Koordinat segi lima non-cembung.

Pada bagian ini, simpul dari poligon yang sedang dipertimbangkan akan diambil dalam urutan. Untuk kemudahan dalam beberapa rumus, notasi (xn, yn) = (x0, y0) juga akan digunakan.

Jika poligon tidak berpotongan sendiri (yaitu, sederhana), tanda luas adalah

atau, menggunakan determinan

dimana adalah jarak kuadrat antara dan [3][4]

Luas bertanda tergantung pada urutan simpul dan orientasi dari bidang. Biasanya, orientasi positif ditentukan oleh rotasi (berlawanan arah jarum jam) yang memetakan positif x-sumbu ke positif y-sumbu. Jika simpul diurutkan berlawanan arah jarum jam (yaitu, menurut orientasi positif), luas yang ditandatangani positif; jika tidak, itu negatif. Dalam kedua kasus tersebut, rumus luasnya benar di nilai absolut. Hal tersebut biasanya disebut rumus tali sepatu atau rumus Surveyor.[5]

Luas L poligon sederhana juga dapat dihitung jika panjang sisinya, a1, a2, ..., an dan sudut eksterior, θ1, θ2, ..., θn diketahui, dari:

Rumusnya dijelaskan oleh Lopshits pada tahun 1963.[6]

Bila poligon dapat digambar pada grid yang berjarak sama sehingga semua simpulnya adalah titik grid, Teorema Pilih memberikan rumus sederhana untuk luas poligon berdasarkan jumlah interior: angka sebelumnya ditambah setengah angka terakhir, minus 1.

In every polygon with perimeter p and area A , the isoperimetric inequality holds.[7]

Untuk dua poligon sederhana yang luasnya sama, Teorema Bolyai–Gerwien menyatakan bahwa poligon pertama dapat dipotong menjadi potongan poligonal yang dapat dipasang kembali untuk membentuk poligon kedua.

Panjang sisi poligon secara umum tidak menentukan luasnya.[8] Namun, jika poligonnya siklik maka sisi menentukan luasnya.[9] .[10]

Poligon beraturan

Banyak rumus khusus yang diterapkan pada bidang poligon beraturan.

Luas poligon beraturan diberikan dalam radius r dari lingkaran tertulis dan kelilingnya p oleh

Jari-jari ini juga disebut apotema dan sering direpresentasikan sebagai a.

Luas beraturan n-gon dengan sisi yang tertulis dalam lingkaran satuan tersebut

Luas sebuah n-gon dalam hal jari-jari R dari lingkaran berbatas dan kelilingnya p diberikan oleh

Luas sebuah n beraturan-gon tertulis dalam lingkaran jari-jari satuan, dengan sisi s dan sudut interior juga dapat dinyatakan secara trigonometri sebagai

Centroid

Menggunakan konvensi yang sama untuk koordinat puncak seperti pada bagian sebelumnya, koordinat dari pusat massa dari poligon sederhana yang solid adalah

Dalam rumus ini, nilai area yang ditandatangani harus digunakan.


Generalisasi

Nama dan jenis

Poligon adalah dinamakan sesuai dengan jumlah tepi, bergabung satu dengan awalan angka dalam bahasa Yunani dengan akhiran -gon. Contoh pentagon, dodekagon. Segitiga, sisi empat, dan nonagon adalah pengecualian-pengecualian. Untuk nomor-nomor lebih besar, ahli matematika menulis angka sendiri, contoh 17-gon. Satu variabel dapat juga digunakan, biasanya n-gon. Ini adalah jika jumlah berguna untuk tepi adalah digunakan dalam satu rumus.

Nama poligon
Nama Bilangan sisi
henagon (atau monogon) 1
digon 2
segi tiga (atau trigon) 3
segi empat (atau tetragon) 4
segi lima (atau pentagon) 5
heksagon (atau seksagon) 6
heptagon (elakkan "septagon" = Latin [sept-] + Greek) 7
oktagon 8
nonagon (atau enneagon) 9
dekagon 10
hendekagon (elakkan "undekagon" = Latin [un-] + Greek) 11
dodekagon (elakkan "duodekagon" = Latin [duo-] + Greek) 12
tridekagon atau triskaidekagon (MathWorld) 13
tetradekagon atau tetrakaidekagon interal angle approx 154.2857 degrees.(MathWorld) 14
pentadekagon (atau quindekagon) atau pentakaidekagon 15
heksadekagon atau heksakaidekagon 16
heptadekagon atau heptakaidekagon 17
oktadekagon atau oktakaidekagon 18
enneadekagon atau enneakaidekagon atau nonadekagon 19
ikosagon 20
triakontagon 30
tetrakontagon 40
pentakontagon 50
heksakontagon (MathWorld) 60
heptakontagon 70
oktakontagon 80
nonakontagon 90
hektagon (juga hektogon) (elakkan "sentagon" = Latin [cent-] + Greek) 100
kiliagon 1000
miriagon 10,000
dekemiriagon 100,000
hekatommiragon (atau dekatommiriagon) 1,000,000

Penamaan poligon

Poligon yang memiliki sisi lebih dari 20 sisi dan kurang dari 100 sisi dinamakan dengan menggunakan kombinasi kata nama berikut:

Angka Puluh dan Angka Sa Imbuhan Akhir
-kai- 1 -hena- -gon
20 icosa- 2 -di-
30 triaconta- 3 -tri-
40 tetraconta- 4 -tetra-
50 pentaconta- 5 -penta-
60 hexaconta- 6 -hexa-
70 heptaconta- 7 -hepta-
80 octaconta- 8 -octa-
90 enneaconta- 9 -ennea-

Contohnya, untuk poligon bersisi 42 akan dinamakan seperti berikut:

Angka puluh dan Angka sa Imbuhan akhir Nama penuh Poligon
tetraconta- -kai- -di- -gon tetracontakaidigon

dan untuk objek bersisi 50

Angka Puluh dan Angka Sa Imbuhan akhir Nama penuh Poligon
pentaconta-   -gon pentacontagon

Namun begitu, poligon yang melebihi nonagons dan decagons, pakar matematika lebih gemar menggunakan angka notasi tersebut (misalnya, MathWorld memiliki artikel tentang 17-gons dan 257-gons).

Sejarah

historical image of polygons (1699)

Poligon telah dikenal sejak zaman dahulu. Poligon reguler diketahui orang sejak zaman Yunani kuno, dan pentagram, poligon beraturan yang tidak cembung (poligon bintang), muncul pada vas bunga Aristophonus, Caere, tertanggal abad-ke 7 Sebelum Masehi.[butuh rujukan] Non-convex polygons in general were not systematically studied until the 14th century by Thomas Bradwardine.[11]

In 1952, Geoffrey Colin Shephard generalized the idea of polygons to the complex plane, where each real dimension is accompanied by an imaginary one, to create complex polygons.[12]

Referensi

  1. ^ Craig, John (1849). Sebuah teknologi etimologi universal baru, dan kamus pengucapan bahasa Inggris. Oxford University. hlm. 404.  Extract of p. 404
  2. ^ Kappraff, Jay (2002). Luar biasa: tur berpemandu melintasi alam, mitos, dan angka. World Scientific. hlm. 258. ISBN 978-981-02-4702-7. 
  3. ^ B.Sz. Nagy, L. Rédey: Eine Verallgemeinerung der Inhaltsformel von Heron. Publ. Math. Debrecen 1, 42–50 (1949)
  4. ^ Bourke, Paul (Juli 1988). "Menghitung Luas Dan Sentroid Poligon" (PDF). Diakses tanggal 6 Feb 2013. 
  5. ^ Bart Braden (1986). "Formula Luas Surveyor" (PDF). The College Mathematics Journal. 17 (4): 326–337. doi:10.2307/2686282. Diarsipkan dari versi asli (PDF) tanggal 2012-11-07. 
  6. ^ A.M. Lopshits (1963). Perhitungan bidang angka berorientasi. translators: J Massalski and C Mills, Jr. D C Heath and Company: Boston, MA. 
  7. ^ Dergiades, Nikolaos, "An elementary proof of the isoperimetric inequality", Forum Mathematicorum 2, 2002, 129–130.
  8. ^ Robbins, "Poligon tertulis dalam lingkaran," American Mathematical Monthly 102, June–July 1995.
  9. ^ Pak, Igor (2005). "Area poligon siklik: kemajuan terbaru pada dugaan Robbins". Advances in Applied Mathematics. 34 (4): 690–696. arXiv:math/0408104alt=Dapat diakses gratis. doi:10.1016/j.aam.2004.08.006. MR 2128993. 
  10. ^ Chakerian, G. D. "Tampilan Geometri yang Terdistorsi." Ch. 7 in Plum Matematika (R. Honsberger, editor). Washington, DC: Asosiasi Matematika Amerika, 1979: 147.
  11. ^ Coxeter, H.S.M.; Regular Polytopes, 3rd Edn, Dover (pbk), 1973, p.114
  12. ^ Shephard, G.C.; "Regular complex polytopes", Proc. London Math. Soc. Series 3 Volume 2, 1952, pp 82-97