Lompat ke isi

Bulan

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Revisi sejak 1 April 2014 17.10 oleh Dikaalnas (bicara | kontrib) (lanjutkan)
Bulan Simbol Bulan
Full moon in the darkness of the night sky. It is patterned with a mix of light-tone regions and darker, irregular blotches, and scattered with varying sizes of impact craters, circles surrounded by out-thrown rays of bright ejecta.
Bulan purnama terlihat dari belahan utara Bumi
Penamaan
Kata sifat bahasa Inggrislunar, selenic
Ciri-ciri orbit
Perigee363.295 km
(0,0024 AU)
Apogee405.503 km
(0,0027 AU)
384.399 km
(0,00257 AU)[1]
Eksentrisitas0,0549[1]
27,321582 h (27 d 7 h 43.1 min[1])
29,530589 h (29 d 12 h 44 min 2.9 s)
Kecepatan orbit rata-rata
1,022 km/s
Inklinasi5.145° ke ekliptika[2] (antara 18.29° dan 28.58° ke khatulistiwa Bumi)[1]
Mundur satu revolusi dalam 18.6 tahun
Maju satu revolusi dalam 8.85 tahun
Satelit dariBumi
Ciri-ciri fisik
Jari-jari rata-rata
1.737,10 km (0.273 Bumi)[1][3]
Jari-jari khatulistiwa
1.738,14 km (0.273 Bumi)[3]
Jari-jari kutub
1.735,97 km (0.273 Bumi)[3]
Kepepatan0,00125
Keliling10.921 km (khatulistiwa)
3,793×107 km2 (0.074 Bumi)
Volume2,1958×1010 km3 (0.020 Bumi)
Massa7,3477×1022 kg (0,012300 Bumi[1])
Massa jenis rata-rata
3,3464 g/cm3[1]
1,622 m/s2 (0,1654 g)
2,38 km/s
27,321582 h (sinkron)
Kecepatan rotasi khatulistiwa
4.627 m/s
1.5424° (ke ekliptika)
6.687° (ke bidang orbit)[2]
Albedo0.136[4]
Suhu permukaan min. rata-rata maks.
Khatulistiwa 100 K 220 K 390 K
85°N[5] 70 K 130 K 230 K
−2.5 to −12.9[a]
−12.74 (rata-rata bulan purnama)[3]
29.3 to 34.1 menit busur[3][b]
Atmosfer[6]
Tekanan permukaan
10−7 Pa (siang)
10−10 Pa (malam)[c]
Komposisi per volumeAr, He, Na, K, H, Rn
Bulan yang berwarna merah dan jingga, terlihat dari Bumi saat gerhana Bulan, ketika Bumi berada di antara Bulan dan Matahari.

Bulan adalah satelit alami Bumi satu-satunya[d][7] dan merupakan bulan terbesar kelima dalam Tata Surya. Bulan juga merupakan satelit alami terbesar di Tata Surya menurut ukuran planet yang diorbitnya,[e] dengan diameter 27%, kepadatan 60%, dan massa 1⁄81 (1.23%) dari Bumi. Di antara satelit alami lainnya, Bulan adalah satelit terpadat kedua setelah Io, satelit Yupiter.

Bulan berada pada rotasi sinkron dengan Bumi, yang selalu memperlihatkan sisi yang sama pada Bumi, dengan sisi dekat ditandai oleh mare vulkanik gelap yang terdapat di antara dataran tinggi kerak yang terang dan kawah tubrukan yang menonjol. Bulan adalah benda langit yang paling terang setelah Matahari. Meskipun Bulan tampak sangat putih dan terang, permukaan Bulan sebenarnya gelap, dengan tingkat kecerahan yang sedikit lebih tinggi dari aspal cair. Sejak zaman kuno, posisinya yang menonjol di langit dan fasenya yang teratur telah memengaruhi banyak budaya, termasuk bahasa, penanggalan, seni, dan mitologi. Pengaruh gravitasi Bulan menyebabkan terjadinya pasang surut di lautan dan pemanjangan waktu pada hari di Bumi. Jarak orbit Bulan dari Bumi saat ini adalah sekitar tiga puluh kali dari diameter Bumi, yang menyebabkan ukuran Bulan yang muncul di langit hampir sama besar dengan ukuran Matahari, sehingga memungkinkan Bulan untuk menutupi Matahari dan mengakibatkan terjadinya gerhana matahari total. Jarak linear Bulan dari Bumi saat ini meningkat dengan laju 3.82±0.07 cm per tahun, meskipun laju ini tidak konstan.[8]

Bulan diperkirakan terbentuk sekitar 4,5 miliar tahun yang lalu, tak lama setelah pembentukan Bumi. Meskipun terdapat sejumlah hipotesis mengenai asal usul Bulan, hipotesis yang paling diterima saat ini menjelaskan bahwa Bulan terbentuk dari serpihan-serpihan yang terlepas setelah sebuah benda langit seukuran Mars bertubrukan dengan Bumi.

Bulan adalah satu-satunya benda langit selain Bumi yang telah didarati oleh manusia. Program Luna Uni Soviet adalah wahana pertama yang mencapai Bulan dengan pesawat ruang angkasa tak berawak pada tahun 1959; program Apollo NASA Amerika Serikat merupakan misi luar angkasa berawak satu-satunya yang telah mencapai Bulan hingga saat ini, dimulai dengan peluncuran misi berawak Apollo 8 yang mengorbit Bulan pada tahun 1968, dan diikuti oleh enam misi pendaratan berawak antara tahun 1969 dan 1972, yang pertama adalah Apollo 11. Misi ini kembali ke Bumi dengan membawa 380 kg batuan Bulan, yang digunakan untuk mengembangkan pemahaman geologi mengenai asal usul, pembentukan struktur dalam, dan sejarah geologi Bulan.

Setelah misi Apollo 17 pada 1972, Bulan hanya disinggahi oleh pesawat ruang angkasa tak berawak. Misi-misi tersebut pada umumnya merupakan misi orbit; sejak tahun 2004, Jepang, RRC, India, Amerika Serikat, dan Badan Luar Angkasa Eropa telah meluncurkan wahana pengorbit Bulan, yang turut bersumbangsih terhadap penemuan es air di kawah kutub Bulan. Pasca Apollo, dua negara juga telah mengirimkan misi rover ke Bulan, yakni misi Lunokhod Soviet terakhir pada tahun 1973, dan misi berkelanjutan Chang'e 3 RRC, yang meluncurkan Yutu rover pada tanggal 14 Desember 2013.

Misi berawak ke Bulan di masa depan telah direncakan oleh berbagai negara, baik yang didanai oleh pemerintah atau swasta. Di bawah Perjanjian Luar Angkasa, Bulan tetap bebas dijelajahi oleh semua negara untuk tujuan damai.

Nama dan etimologi

Dalam bahasa Inggris, nama untuk satelit alami Bumi adalah moon.[9][10] Kata benda moon berasal dari kata moone (sekitar 1380), yang juga berkembang dari kata mone (1135), berasal dari kata bahasa Inggris Kuno mōna (sebelum 725). Sama halnya dengan semua kata kerabat dalam bahasa Jermanik lainnya, kata ini berasal dari bahasa Proto-Jermanik *mǣnōn.[11]

Sebutan lain untuk Bulan dalam bahasa Inggris modern adalah lunar, berasal dari bahasa Latin Luna. Sebutan lainnya yang kurang umum adalah selenic, dari bahasa Yunani Kuno Selene (Σελήνη), yang kemudian menjadi dasar penamaan selenografi.[12]

Pembentukan

Evolusi Bulan.

Beberapa mekanisme yang diajukan mengenai pembentukan Bulan menyatakan bahwa Bulan terbentuk pada 4,527 ± 0,010 miliar tahun yang lalu,[f] sekitar 30-50 juta tahun setelah pembentukan Tata Surya.[13] Penelitian terbaru yang dilakukan oleh Rick Carlson menunjukkan bahwa Bulan berusia sekurang-kurangnya 4,4 hingga 4,45 miliar tahun.[14] [15] Hipotesis ini antara lain menjelaskan bahwa fisi Bulan berasal dari kerak Bumi akibat gaya sentrifugal,[16][17] penangkapan gravitasi sebelum pembentukan Bulan,[18] dan pembentukan Bumi dan Bulan secara bersama-sama di cakram akresi primordial.[17] Hipotesis ini tidak menjelaskan tinggi momentum sudut dari sistem Bumi-Bulan.[19]

Hipotesis yang berlaku saat ini menjelaskan bahwa sistem Bumi-Bulan terbentuk akibat tubrukan besar, ketika benda langit seukuran Mars (bernama Theia) bertabrakan dengan proto-Bumi yang baru terbentuk, memuntahkan material ke orbit di sekitarnya yang kemudian berkumpul untuk membentuk Bulan.[20] Hipotesis ini mungkin merupakan hipotesis yang paling menjelaskan mengenai asal usul Bulan, meskipun penjelasannya tidak sempurna.

Tubrukan besar diperkirakan sering terjadi pada awal pembentukan Tata Surya. Pemodelan simulasi komputer mengenai tubrukan besar sesuai dengan ukuran momentum sudut sistem Bumi-Bulan dan ukuran inti Bulan yang kecil. Simulasi ini juga menunjukkan bahwa sebagian besar materi pada Bulan berasal dari planet penabrak, bukannya dari proto-Bumi.[21] Akan tetapi, pengujian terbaru menunjukkan bahwa sebagian besar materi Bulan berasal dari Bumi, bukannya dari penabrak.[22][23][24] Bukti meteorit menunjukkan bahwa materi benda langit lainnya seperti Mars dan Vesta memiliki oksigen dan komposisi isotop yang sangat berbeda dengan Bumi, sedangkan Bulan dan Bumi memiliki komposisi isotop yang hampir identik. Pencampuran materi yang menguap pasca tubrukan antara benda langit pembentuk Bulan dengan Bumi diperkirakan menyamakan komposisi isotop mereka,[25] meskipun hal ini masih diperdebatkan.[26]

Besarnya energi yang dilepaskan saat terjadinya tubrukan besar dan akresi materi di orbit Bumi yang terjadi setelahnya akan melelehkan kulit bagian luar Bumi, yang kemudian membentuk lautan magma.[27][28] Bulan yang baru terbentuk juga memiliki lautan magma sendiri; diperkirakan kedalamannya sekitar 500 km dari radius keseluruhan Bulan.[27]

Meskipun akurasi dalam menjelaskan pembentukan Bulan didukung oleh banyak bukti, masih terdapat beberapa kesulitan yang tidak sepenuhnya bisa dijelaskan oleh hipotesis tubrukan besar, terutama yang berkaitan dengan komposisi Bulan.[29]

Pada tahun 2001, tim di Carnegie Institute of Washington melaporkan penelitian yang mereka lakukan terhadap isotop batuan Bulan.[30] Tim ini menemukan bahwa batuan Bulan yang dibawa ke Bumi melalui Program Apollo memiliki isotop yang identik dengan batuan Bumi, dan berbeda dengan batuan pada kebanyakan benda langit lainnya di Tata Surya. Karena sebagian besar materi yang lepas ke orbit dan membentuk Bulan diduga berasal dari Theia, penemuan ini sama sekali tak terduga. Pada tahun 2007, para peneliti dari California Institute of Technology mengumumkan bahwa kesamaan isotop antara Bumi dengan Theia kurang dari 1%.[31] Pada tahun 2012, analisis yang dilakukan terhadap sampel isotop Bulan menunjukkan bahwa Bulan memiliki komposisi isotop yang sama dengan Bumi,[32] bertentangan dengan hipotesis yang menjelaskan bahwa Bulan terbentuk jauh dari orbit Bumi atau dari Theia.

Karakteristik fisik

Struktur dalam

Struktur Bulan
Komposisi kimia permukaan Bulan (berasal dari batuan kerak)[33]
Senyawa Rumus Komposisi (wt %)
Mare Dataran tinggi
silika SiO2 45.4% 45.5%
alumina Al2O3 14.9% 24.0%
kapur CaO 11.8% 15.9%
besi(II) oksida FeO 14.1% 5.9%
magnesia MgO 9.2% 7.5%
titanium dioksida TiO2 3.9% 0.6%
sodium oksida Na2O 0.6% 0.6%
Total 99.9% 100.0%

Bulan tergolong benda langit diferensiasi, yang secara geokimia memiliki komposisi kerak, mantel, dan inti yang berbeda dengan benda langit lainnya. Bulan kaya akan besi padat di bagian inti dalam, dengan radius sekitar 240 km, dan fluida di bagian inti luar, terutama yang terbuat dari besi cair, dengan radius sekitar 300 km. Di sekitar bagian inti Bulan terdapat lapisan pembatas berbentuk cair dengan radius sekitar 500 km.[34] Struktur ini diperkirakan terbentuk akibat kristalisasi fraksional pada lautan magma sesaat setelah pembentukan Bulan 4,5 miliar tahun yang lalu.[35] Kristalisasi lautan magma ini akan membentuk mantel mafik, yang juga disebabkan oleh curah hujan dan peluruhan mineral olivin, klinopiroksen, dan ortopiroksen; setelah tiga perempat lautan magma terkristalisasi, mineral plagioklas berkepadatan rendah akan terbentuk dan mengapung ke bagian atas lapisan kerak.[36] Cairan terakhir yang mengalami proses kristalisasi akan terjebak di antara kerak dan mantel, dengan inkompabilitas dan unsur penghasil panas yang berlimpah.[1] Sesuai dengan proses ini, pemetaan geokimia dari orbit menunjukkan bahwa sebagian besar kerak Bulan bersifat anortosit,[6] dan pengujian yang dilakukan terhadap sampel batuan Bulan yang berasal dari banjir lava di permukaan juga menjelaskan bahwa komposisi mantel mafik Bulan lebih kaya akan besi jika dibandingkan dengan Bumi.[1] Teknik geofisika menjelaskan bahwa ketebalan rata-rata kerak Bulan adalah ~50 km thick.[1]

Bulan adalah satelit terpadat kedua di Tata Surya setelah Io.[37] Akan tetapi, inti dalam Bulan tergolong kecil, dengan radius sekitar 350 km atau kurang;[1] ukuran ini hanya ~20%dari ukuran Bulan secara keseluruhan, berbeda dengan benda langit kebumian lainnya, yang ukuran inti dalamnya hampir 50% dari ukuran keseluruhan. Komposisi Bulan belum diketahui secara pasti, namun diduga perpaduan dari besi metalik dengan sejumlah kecil sulfur dan nikel; analisis mengenai waktu rotasi variabel Bulan menunjukkan bahwa sebagian inti Bulan berbentuk cair.[38]

Geologi permukaan

This full disk is nearly featureless, a uniform grey surface with almost no dark mare. There are many bright overlapping dots of impact craters.
Sisi jauh Bulan, dengan mare gelap yang nyaris tidak ada.[39]
Topografi Bulan

Topografi Bulan telah diukur dengan menggunakan metode altimetri laser dan analisis gambar stereo.[40] Bentuk topografi yang paling jelas terlihat adalah basin Kutub Selatan Aiken di sisi jauh, dengan diameter sekitar sekitar 2.240 km, yang merupakan kawah terbesar di Bulan serta kawah terbesar yang pernah ditemukan di Tata Surya.[41][42] Titik terendah pada permukaan Bulan berada pada kedalaman 13 km.[41][43] Sedangkan titik tertinggi terdapat di bagian timurlaut, yang diduga mengalami penebalan akibat pembentukan basin Kutub Selatan Aiken.[44] Basin raksasa lainnya, seperti Imbrium, Serenitatis, Crisium, Smythii, dan Orientale, memiliki lebar dan ketinggian yang lebih rendah.[41] Ketinggian rata-rata sisi jauh Bulan kira-kira 1,9 km lebih tinggi jika dibandingkan dengan sisi dekat.[1]

Bulan sebagai penanda waktu

Berkas:Lunar moon.jpg
Fase bulan

Bulan purnama adalah keadaan ketika Bulan tampak bulat sempurna dari Bumi. Pada saat itu, Bumi terletak hampir segaris di antara Matahari dan Bulan, sehingga seluruh permukaan Bulan yang diterangi Matahari terlihat jelas dari arah Bumi.

Kebalikannya adalah saat bulan mati, yaitu saat Bulan terletak pada hampir segaris di antara Matahari dan Bumi, sehingga yang 'terlihat' dari Bumi adalah sisi belakang Bulan yang gelap, alias tidak nampak apa-apa.

Di antara kedua waktu itu terdapat keadaan bulan separuh dan bulan sabit, yakni pada saat posisi Bulan terhadap Bumi membentuk sudut tertentu terhadap garis Bumi - Matahari. Pada saat itu, hanya sebagian permukaan Bulan yang disinari Matahari yang terlihat dari Bumi.

Fase-fase bulan

Referensi

  1. ^ a b c d e f g h i j k l Kesalahan pengutipan: Tag <ref> tidak sah; tidak ditemukan teks untuk ref bernama W06
  2. ^ a b Kesalahan pengutipan: Tag <ref> tidak sah; tidak ditemukan teks untuk ref bernama Lang2011
  3. ^ a b c d e Kesalahan pengutipan: Tag <ref> tidak sah; tidak ditemukan teks untuk ref bernama NSSDC
  4. ^ Kesalahan pengutipan: Tag <ref> tidak sah; tidak ditemukan teks untuk ref bernama Saari
  5. ^ Kesalahan pengutipan: Tag <ref> tidak sah; tidak ditemukan teks untuk ref bernama Vasavada1999
  6. ^ a b Kesalahan pengutipan: Tag <ref> tidak sah; tidak ditemukan teks untuk ref bernama L06
  7. ^ Kesalahan pengutipan: Tag <ref> tidak sah; tidak ditemukan teks untuk ref bernama Morais2002
  8. ^ http://lasp.colorado.edu/life/GEOL5835/Moon_presentation_19Sept.pdf
  9. ^ "Naming Astronomical Objects: Spelling of Names". International Astronomical Union. Diakses tanggal 29 March 2010. 
  10. ^ Kesalahan pengutipan: Tag <ref> tidak sah; tidak ditemukan teks untuk ref bernama PN-FAQ
  11. ^ Kesalahan pengutipan: Tag <ref> tidak sah; tidak ditemukan teks untuk ref bernama barnhart1995
  12. ^ Kesalahan pengutipan: Tag <ref> tidak sah; tidak ditemukan teks untuk ref bernama oed
  13. ^ Kleine, T. (2005). "Hf–W Chronometry of Lunar Metals and the Age and Early Differentiation of the Moon". Science. 310 (5754): 1671–1674. Bibcode:2005Sci...310.1671K. doi:10.1126/science.1118842. PMID 16308422. 
  14. ^ "Carnegie Institution for Science research". Diakses tanggal 2013-10-12. 
  15. ^ "Phys.org's account of Carlson's presentation to the Royal Society". Diakses tanggal 2013-10-13. 
  16. ^ Kesalahan pengutipan: Tag <ref> tidak sah; tidak ditemukan teks untuk ref bernama Binder
  17. ^ a b Kesalahan pengutipan: Tag <ref> tidak sah; tidak ditemukan teks untuk ref bernama BotM
  18. ^ Kesalahan pengutipan: Tag <ref> tidak sah; tidak ditemukan teks untuk ref bernama Mitler
  19. ^ Stevenson, D.J. (1987). "Origin of the moon–The collision hypothesis". Annual Review of Earth and Planetary Sciences. 15 (1): 271–315. Bibcode:1987AREPS..15..271S. doi:10.1146/annurev.ea.15.050187.001415. 
  20. ^ Kesalahan pengutipan: Tag <ref> tidak sah; tidak ditemukan teks untuk ref bernama taylor1998
  21. ^ Canup, R. (2001). "Origin of the Moon in a giant impact near the end of Earth's formation". Nature. 412 (6848): 708–712. Bibcode:2001Natur.412..708C. doi:10.1038/35089010. PMID 11507633. 
  22. ^ "Earth-Asteroid Collision Formed Moon Later Than Thought". News.nationalgeographic.com. 28 October 2010. Diakses tanggal 7 May 2012. 
  23. ^ http://digitalcommons.arizona.edu/objectviewer?o=uadc://azu_maps/Volume43/NumberSupplement/Touboul.pdf
  24. ^ Touboul, M.; Kleine, T.; Bourdon, B.; Palme, H.; Wieler, R. (2007). "Late formation and prolonged differentiation of the Moon inferred from W isotopes in lunar metals". Nature. 450 (7173): 1206–9. Bibcode:2007Natur.450.1206T. doi:10.1038/nature06428. PMID 18097403. 
  25. ^ Kesalahan pengutipan: Tag <ref> tidak sah; tidak ditemukan teks untuk ref bernama Pahlevan2007
  26. ^ Nield, Ted (2009). "Moonwalk (summary of meeting at Meteoritical Society's 72nd Annual Meeting, Nancy, France)". Geoscientist. 19: 8. 
  27. ^ a b Kesalahan pengutipan: Tag <ref> tidak sah; tidak ditemukan teks untuk ref bernama Warren1985
  28. ^ Tonks, W. Brian (1993). "Magma ocean formation due to giant impacts". Journal of Geophysical Research. 98 (E3): 5319–5333. Bibcode:1993JGR....98.5319T. doi:10.1029/92JE02726. 
  29. ^ Daniel Clery (11 October 2013). "Impact Theory Gets Whacked". Science. 342: 183. 
  30. ^ Wiechert, U.; et al. (October 2001). "Oxygen Isotopes and the Moon-Forming Giant Impact". Science. Science (jurnal). 294 (12): 345–348. Bibcode:2001Sci...294..345W. doi:10.1126/science.1063037. PMID 11598294. Diakses tanggal 2009-07-05. 
  31. ^ Pahlevan, Kaveh; Stevenson, David (October 2007). "Equilibration in the Aftermath of the Lunar-forming Giant Impact". EPSL. 262 (3–4): 438–449. arXiv:1012.5323alt=Dapat diakses gratis. Bibcode:2007E&PSL.262..438P. doi:10.1016/j.epsl.2007.07.055. 
  32. ^ Kesalahan pengutipan: Tag <ref> tidak sah; tidak ditemukan teks untuk ref bernama test
  33. ^ Taylor, Stuart Ross (1975). Lunar science: A post-Apollo view. New York, Pergamon Press, Inc. hlm. 64. 
  34. ^ "NASA Research Team Reveals Moon Has Earth-Like Core". NASA. January 6, 2011. 
  35. ^ Nemchin, A.; Timms, N.; Pidgeon, R.; Geisler, T.; Reddy, S.; Meyer, C. (2009). "Timing of crystallization of the lunar magma ocean constrained by the oldest zircon". Nature Geoscience. 2 (2): 133–136. Bibcode:2009NatGe...2..133N. doi:10.1038/ngeo417. 
  36. ^ Kesalahan pengutipan: Tag <ref> tidak sah; tidak ditemukan teks untuk ref bernama S06
  37. ^ Kesalahan pengutipan: Tag <ref> tidak sah; tidak ditemukan teks untuk ref bernama Schubert2004
  38. ^ Williams, J.G. (2006). "Lunar laser ranging science: Gravitational physics and lunar interior and geodesy". Advances in Space Research. 37 (1): 6771. arXiv:gr-qc/0412049alt=Dapat diakses gratis. Bibcode:2006AdSpR..37...67W. doi:10.1016/j.asr.2005.05.013. 
  39. ^ "Landscapes from the ancient and eroded lunar far side". esa. Diakses tanggal 15 February 2010. 
  40. ^ Spudis, Paul D.; Cook, A.; Robinson, M.; Bussey, B.; Fessler, B.; Cook; Robinson; Bussey; Fessler (January 1998). "Topography of the South Polar Region from Clementine Stereo Imaging". Workshop on New Views of the Moon: Integrated Remotely Sensed, Geophysical, and Sample Datasets: 69. Bibcode:1998nvmi.conf...69S. 
  41. ^ a b c Kesalahan pengutipan: Tag <ref> tidak sah; tidak ditemukan teks untuk ref bernama Spudis1994
  42. ^ Pieters, C.M.; Tompkins, S.; Head, J.W.; Hess, P.C. (1997). "Mineralogy of the Mafic Anomaly in the South Pole‐Aitken Basin: Implications for excavation of the lunar mantle". Geophysical Research Letters. 24 (15): 1903–1906. Bibcode:1997GeoRL..24.1903P. doi:10.1029/97GL01718. 
  43. ^ Taylor, G.J. (17 July 1998). "The Biggest Hole in the Solar System". Planetary Science Research Discoveries, Hawai'i Institute of Geophysics and Planetology. Diakses tanggal 12 April 2007. 
  44. ^ Schultz, P. H. (March 1997). "Forming the south-pole Aitken basin – The extreme games". Conference Paper, 28th Annual Lunar and Planetary Science Conference. 28: 1259. Bibcode:1997LPI....28.1259S. 

Templat:Link FA Templat:Link FA Templat:Link FA Templat:Link FA Templat:Link FA Templat:Link FA Templat:Link FA Templat:Link FA Templat:Link FA Templat:Link FA Templat:Link FA Templat:Link FA Templat:Link GA Templat:Link FA
Kesalahan pengutipan: Ditemukan tag <ref> untuk kelompok bernama "lower-alpha", tapi tidak ditemukan tag <references group="lower-alpha"/> yang berkaitan