Bulan

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Revisi sejak 5 April 2014 20.29 oleh Dikaalnas (bicara | kontrib) (+)
Bulan Simbol Bulan
Full moon in the darkness of the night sky. It is patterned with a mix of light-tone regions and darker, irregular blotches, and scattered with varying sizes of impact craters, circles surrounded by out-thrown rays of bright ejecta.
Bulan purnama terlihat dari belahan utara Bumi
Penamaan
Lunar atau selenic
Kata sifat bahasa Inggrislunar, selenic
Ciri-ciri orbit
Perigee363.295 km
(0,0024 AU)
Apogee405.503 km
(0,0027 AU)
384.399 km
(0,00257 AU)[1]
Eksentrisitas0,0549[1]
27,321582 h (27 d 7 h 43.1 min[1])
29,530589 h (29 d 12 h 44 min 2.9 s)
Kecepatan orbit rata-rata
1,022 km/s
Inklinasi5.145° ke ekliptika[2] (antara 18.29° dan 28.58° ke khatulistiwa Bumi)[1]
Mundur satu revolusi dalam 18.6 tahun
Maju satu revolusi dalam 8.85 tahun
Satelit dariBumi
Ciri-ciri fisik
Jari-jari rata-rata
1.737,10 km (0.273 Bumi)[1][3]
Jari-jari khatulistiwa
1.738,14 km (0.273 Bumi)[3]
Jari-jari kutub
1.735,97 km (0.273 Bumi)[3]
Kepepatan0,00125
Keliling10.921 km (khatulistiwa)
3,793×107 km2 (0.074 Bumi)
Volume2,1958×1010 km3 (0.020 Bumi)
Massa7,3477×1022 kg (0,012300 Bumi[1])
Massa jenis rata-rata
3,3464 g/cm3[1]
1,622 m/s2 (0,1654 g)
2,38 km/s
27,321582 h (sinkron)
Kecepatan rotasi khatulistiwa
4.627 m/s
1.5424° (ke ekliptika)
6.687° (ke bidang orbit)[2]
Albedo0.136[4]
Suhu permukaan min. rata-rata maks.
Khatulistiwa 100 K 220 K 390 K
85°N[5] 70 K 130 K 230 K
−2.5 sampai −12.9[a]
−12.74 (rata-rata bulan purnama)[3]
29.3 sampai 34.1 menit busur[3][b]
Atmosfer[6]
Tekanan permukaan
10−7 Pa (siang)
10−10 Pa (malam)[c]
Komposisi per volumeAr, He, Na, K, H, Rn
Bulan yang berwarna merah dan jingga, terlihat dari Bumi saat gerhana Bulan, ketika Bumi berada di antara Bulan dan Matahari.

Bulan adalah satelit alami Bumi satu-satunya[d][7] dan merupakan bulan terbesar kelima dalam Tata Surya. Bulan juga merupakan satelit alami terbesar di Tata Surya menurut ukuran planet yang diorbitnya,[e] dengan diameter 27%, kepadatan 60%, dan massa 1⁄81 (1.23%) dari Bumi. Di antara satelit alami lainnya, Bulan adalah satelit terpadat kedua setelah Io, satelit Yupiter.

Bulan berada pada rotasi sinkron dengan Bumi, yang selalu memperlihatkan sisi yang sama pada Bumi, dengan sisi dekat ditandai oleh mare vulkanik gelap yang terdapat di antara dataran tinggi kerak yang terang dan kawah tubrukan yang menonjol. Bulan adalah benda langit yang paling terang setelah Matahari. Meskipun Bulan tampak sangat putih dan terang, permukaan Bulan sebenarnya gelap, dengan tingkat kecerahan yang sedikit lebih tinggi dari aspal cair. Sejak zaman kuno, posisinya yang menonjol di langit dan fasenya yang teratur telah memengaruhi banyak budaya, termasuk bahasa, penanggalan, seni, dan mitologi. Pengaruh gravitasi Bulan menyebabkan terjadinya pasang surut di lautan dan pemanjangan waktu pada hari di Bumi. Jarak orbit Bulan dari Bumi saat ini adalah sekitar tiga puluh kali dari diameter Bumi, yang menyebabkan ukuran Bulan yang muncul di langit hampir sama besar dengan ukuran Matahari, sehingga memungkinkan Bulan untuk menutupi Matahari dan mengakibatkan terjadinya gerhana matahari total. Jarak linear Bulan dari Bumi saat ini meningkat dengan laju 3.82±0.07 cm per tahun, meskipun laju ini tidak konstan.[8]

Bulan diperkirakan terbentuk sekitar 4,5 miliar tahun yang lalu, tak lama setelah pembentukan Bumi. Meskipun terdapat sejumlah hipotesis mengenai asal usul Bulan, hipotesis yang paling diterima saat ini menjelaskan bahwa Bulan terbentuk dari serpihan-serpihan yang terlepas setelah sebuah benda langit seukuran Mars bertubrukan dengan Bumi.

Bulan adalah satu-satunya benda langit selain Bumi yang telah didarati oleh manusia. Program Luna Uni Soviet adalah wahana pertama yang mencapai Bulan dengan pesawat ruang angkasa tak berawak pada tahun 1959; program Apollo NASA Amerika Serikat merupakan misi luar angkasa berawak satu-satunya yang telah mencapai Bulan hingga saat ini, dimulai dengan peluncuran misi berawak Apollo 8 yang mengorbit Bulan pada tahun 1968, dan diikuti oleh enam misi pendaratan berawak antara tahun 1969 dan 1972, yang pertama adalah Apollo 11. Misi ini kembali ke Bumi dengan membawa 380 kg batuan Bulan, yang digunakan untuk mengembangkan pemahaman geologi mengenai asal usul, pembentukan struktur dalam, dan sejarah geologi Bulan.

Setelah misi Apollo 17 pada 1972, Bulan hanya disinggahi oleh pesawat ruang angkasa tak berawak. Misi-misi tersebut pada umumnya merupakan misi orbit; sejak tahun 2004, Jepang, RRC, India, Amerika Serikat, dan Badan Luar Angkasa Eropa telah meluncurkan wahana pengorbit Bulan, yang turut bersumbangsih terhadap penemuan es air di kawah kutub Bulan. Pasca Apollo, dua negara juga telah mengirimkan misi rover ke Bulan, yakni misi Lunokhod Soviet terakhir pada tahun 1973, dan misi berkelanjutan Chang'e 3 RRC, yang meluncurkan Yutu rover pada tanggal 14 Desember 2013.

Misi berawak ke Bulan di masa depan telah direncakan oleh berbagai negara, baik yang didanai oleh pemerintah atau swasta. Di bawah Perjanjian Luar Angkasa, Bulan tetap bebas dijelajahi oleh semua negara untuk tujuan damai.

Nama dan etimologi

Dalam bahasa Inggris, nama untuk satelit alami Bumi adalah moon.[9][10] Kata benda moon berasal dari kata moone (sekitar 1380), yang juga berkembang dari kata mone (1135), berasal dari kata bahasa Inggris Kuno mōna (sebelum 725). Sama halnya dengan semua kata kerabat dalam bahasa Jermanik lainnya, kata ini berasal dari bahasa Proto-Jermanik *mǣnōn.[11]

Sebutan lain untuk Bulan dalam bahasa Inggris modern adalah lunar, berasal dari bahasa Latin Luna. Sebutan lainnya yang kurang umum adalah selenic, dari bahasa Yunani Kuno Selene (Σελήνη), yang kemudian menjadi dasar penamaan selenografi.[12]

Pembentukan

Evolusi Bulan.

Beberapa mekanisme yang diajukan mengenai pembentukan Bulan menyatakan bahwa Bulan terbentuk pada 4,527 ± 0,010 miliar tahun yang lalu,[f] sekitar 30-50 juta tahun setelah pembentukan Tata Surya.[13] Penelitian terbaru yang dilakukan oleh Rick Carlson menunjukkan bahwa Bulan berusia sekurang-kurangnya 4,4 hingga 4,45 miliar tahun.[14] [15] Hipotesis ini antara lain menjelaskan bahwa fisi Bulan berasal dari kerak Bumi akibat gaya sentrifugal,[16][17] penangkapan gravitasi sebelum pembentukan Bulan,[18] dan pembentukan Bumi dan Bulan secara bersama-sama di cakram akresi primordial.[17] Hipotesis ini tidak menjelaskan tinggi momentum sudut dari sistem Bumi-Bulan.[19]

Hipotesis yang berlaku saat ini menjelaskan bahwa sistem Bumi-Bulan terbentuk akibat tubrukan besar, ketika benda langit seukuran Mars (bernama Theia) bertabrakan dengan proto-Bumi yang baru terbentuk, memuntahkan material ke orbit di sekitarnya yang kemudian berkumpul untuk membentuk Bulan.[20] Hipotesis ini mungkin merupakan hipotesis yang paling menjelaskan mengenai asal usul Bulan, meskipun penjelasannya tidak sempurna.

Tubrukan besar diperkirakan umum terjadi pada awal pembentukan Tata Surya. Pemodelan simulasi komputer mengenai tubrukan besar sesuai dengan ukuran momentum sudut sistem Bumi-Bulan dan ukuran inti Bulan yang kecil. Simulasi ini juga menunjukkan bahwa sebagian besar materi pada Bulan berasal dari planet penabrak, bukannya dari proto-Bumi.[21] Akan tetapi, pengujian terbaru menunjukkan bahwa sebagian besar materi Bulan berasal dari Bumi, bukannya dari penabrak.[22][23][24] Bukti meteorit menunjukkan bahwa materi benda langit lainnya seperti Mars dan Vesta memiliki oksigen dan komposisi isotop yang sangat berbeda dengan Bumi, sedangkan Bulan dan Bumi memiliki komposisi isotop yang hampir identik. Pencampuran materi yang menguap pasca tubrukan antara benda langit pembentuk Bulan dengan Bumi diperkirakan menyamakan komposisi isotop mereka,[25] meskipun hal ini masih diperdebatkan.[26]

Besarnya energi yang dilepaskan saat terjadinya tubrukan besar dan akresi materi di orbit Bumi yang terjadi setelahnya akan melelehkan kulit bagian luar Bumi, yang kemudian membentuk lautan magma.[27][28] Bulan yang baru terbentuk juga memiliki lautan magma sendiri; diperkirakan kedalamannya sekitar 500 km dari radius keseluruhan Bulan.[27]

Meskipun akurasi dalam menjelaskan pembentukan Bulan didukung oleh banyak bukti, masih terdapat beberapa kesulitan yang tidak sepenuhnya bisa dijelaskan oleh hipotesis tubrukan besar, terutama yang berkaitan dengan komposisi Bulan.[29]

Pada tahun 2001, tim di Carnegie Institute of Washington melaporkan penelitian yang mereka lakukan terhadap isotop batuan Bulan.[30] Tim ini menemukan bahwa batuan Bulan yang dibawa ke Bumi melalui Program Apollo memiliki isotop yang identik dengan batuan Bumi, dan berbeda dengan batuan pada kebanyakan benda langit lainnya di Tata Surya. Karena sebagian besar materi yang lepas ke orbit dan membentuk Bulan diduga berasal dari Theia, penemuan ini sama sekali tak terduga. Pada tahun 2007, para peneliti dari California Institute of Technology mengumumkan bahwa kesamaan isotop antara Bumi dengan Theia kurang dari 1%.[31] Pada tahun 2012, analisis yang dilakukan terhadap sampel isotop Bulan menunjukkan bahwa Bulan memiliki komposisi isotop yang sama dengan Bumi,[32] bertentangan dengan hipotesis yang menjelaskan bahwa Bulan terbentuk jauh dari orbit Bumi atau dari Theia.

Karakteristik fisik

Struktur dalam

Struktur Bulan
Komposisi kimia permukaan Bulan (berasal dari batuan kerak)[33]
Senyawa Rumus Komposisi (wt %)
Mare Dataran tinggi
silika SiO2 45.4% 45.5%
alumina Al2O3 14.9% 24.0%
kapur CaO 11.8% 15.9%
besi(II) oksida FeO 14.1% 5.9%
magnesia MgO 9.2% 7.5%
titanium dioksida TiO2 3.9% 0.6%
sodium oksida Na2O 0.6% 0.6%
Total 99.9% 100.0%

Bulan tergolong benda langit diferensiasi, yang secara geokimia memiliki komposisi kerak, mantel, dan inti yang berbeda dengan benda langit lainnya. Bulan kaya akan besi padat di bagian inti dalam, dengan radius sekitar 240 km, dan fluida di bagian inti luar, terutama yang terbuat dari besi cair, dengan radius sekitar 300 km. Di sekitar bagian inti Bulan terdapat lapisan pembatas berbentuk cair dengan radius sekitar 500 km.[34] Struktur ini diperkirakan terbentuk akibat kristalisasi fraksional pada lautan magma sesaat setelah pembentukan Bulan 4,5 miliar tahun yang lalu.[35] Kristalisasi lautan magma ini akan membentuk mantel mafik, yang juga disebabkan oleh curah hujan dan peluruhan mineral olivin, klinopiroksen, dan ortopiroksen; setelah tiga perempat lautan magma terkristalisasi, mineral plagioklas berkepadatan rendah akan terbentuk dan mengapung ke bagian atas lapisan kerak.[36] Cairan terakhir yang mengalami proses kristalisasi akan terjebak di antara kerak dan mantel, dengan inkompabilitas dan unsur penghasil panas yang berlimpah.[1] Sesuai dengan proses ini, pemetaan geokimia dari orbit menunjukkan bahwa sebagian besar kerak Bulan bersifat anortosit,[6] dan pengujian yang dilakukan terhadap sampel batuan Bulan yang berasal dari banjir lava di permukaan juga menjelaskan bahwa komposisi mantel mafik Bulan lebih kaya akan besi jika dibandingkan dengan Bumi.[1] Teknik geofisika menjelaskan bahwa ketebalan rata-rata kerak Bulan adalah ~50 km thick.[1]

Bulan adalah satelit terpadat kedua di Tata Surya setelah Io.[37] Akan tetapi, inti dalam Bulan tergolong kecil, dengan radius sekitar 350 km atau kurang;[1] ukuran ini hanya ~20%dari ukuran Bulan secara keseluruhan, berbeda dengan benda langit kebumian lainnya, yang ukuran inti dalamnya hampir 50% dari ukuran keseluruhan. Komposisi Bulan belum diketahui secara pasti, namun diduga perpaduan dari besi metalik dengan sejumlah kecil sulfur dan nikel; analisis mengenai waktu rotasi variabel Bulan menunjukkan bahwa sebagian inti Bulan berbentuk cair.[38]

Geologi permukaan

This full disk is nearly featureless, a uniform grey surface with almost no dark mare. There are many bright overlapping dots of impact craters.
Sisi jauh Bulan, dengan mare gelap yang nyaris tidak ada.[39]
Topografi Bulan

Topografi Bulan telah diukur dengan menggunakan metode altimetri laser dan analisis gambar stereo.[40] Bentuk topografi yang paling jelas terlihat adalah basin Kutub Selatan Aitken di sisi jauh, dengan diameter sekitar sekitar 2.240 km, yang merupakan kawah terbesar di Bulan serta kawah terbesar yang pernah ditemukan di Tata Surya.[41][42] Titik terendah pada permukaan Bulan berada pada kedalaman 13 km.[41][43] Sedangkan titik tertinggi terdapat di bagian timurlaut, yang diduga mengalami penebalan akibat pembentukan basin Kutub Selatan Aitken.[44] Basin raksasa lainnya, seperti Imbrium, Serenitatis, Crisium, Smythii, dan Orientale, memiliki lebar dan ketinggian yang lebih rendah.[41] Ketinggian rata-rata sisi jauh Bulan kira-kira 1,9 km lebih tinggi jika dibandingkan dengan sisi dekat.[1]

Fitur vulkanis

Dataran Bulan yang berwarna gelap dan bisa diamati dengan mata telanjang disebut dengan maria (bahasa Latin untuk "laut"; atau mare dalam bentuk tunggal), karena dahulu kala para astronom mengira bahwa dataran ini dipenuhi oleh air.[45] Dataran ini berupa kolam besar yang terbentuk dari lava basal. Meskipun serupa dengan basal kebumian, basal mare memiliki kandungan besi yang lebih tinggi dan kandungan mineral yang kurang.[46][47] Sebagian besar lava ini meletus atau mengalir melalui proses yang bersamaan dengan pembentukan kawah tubrukan. Beberapa bentuk geologi permukaan Bulan seperti gunung berapi perisai dan kubah vulkanis bisa ditemukan di maria di sisi dekat Bulan.[48]

Maria bisa ditemukan hampir di keseluruhan sisi dekat Bulan, mencakup 31% dari total permukaan di sisi dekat,[49] jauh lebih tinggi jika dibandingkan dengan maria pada sisi jauh, yang persentasenya hanya 2%.[50] Hal ini diperkirakan terjadi karena tingginya konsentrasi unsur penghasil panas di bawah kerak di sisi dekat, sebagaimana yang terlihat pada peta geokimia yang diperoleh dari spektrometer sinar gamma Lunar Prospector, yang menyebabkan mantel mengalami pemanasan, meleleh, kemudian naik ke permukaan dan meletus.[36][51][52] Sebagian besar basal mare Bulan meletus pada periode Imbrian, sekitar 3,0–3,5 miliar tahun yang lalu, meskipun hasil penanggalan radiometri menjelaskan waktunya lebih tua 4,2 miliar tahun yang lalu,[53] dan letusan terakhir, berdasarkan penanggalan hitungan kawah, terjadi sekitar 1,2 miliar tahun yang lalu.[54]

Wilayah yang berwarna lebih terang pada Bulan disebut dengan terrae, atau dataran tinggi secara umum, karena wilayah ini lebih tinggi dari kebanyakan maria. Berdasarkan penanggalan radiometri, dataran tinggi Bulan terbentuk sekitar 4,4 miliar tahun yang lalu, dan diduga merupakan kumulasi plagioklas dari lautan magma Bulan.[53][54] Berbeda dengan Bumi, tak ada gunung di Bulan yang diyakini terbentuk akibat peristiwa tektonik.[55][56][57]

Kawah tubrukan

A grey, many-ridged surface from high above. The largest feature is a circular ringed structure with high walled sides and a lower central peak: the entire surface out to the horizon is filled with similar structures that are smaller and overlapping.
Kawah Daedalus di sisi jauh Bulan

Proses geologi lainnya yang memengaruhi bentuk permukaan Bulan adalah kawah tubrukan,[58] yaitu ketika kawah-kawah terbentuk akibat tubrukan antara asteroid dan komet dengan pemukaan Bulan. Diperkirakan terdapat sekitar 300.000 kawah dengan luas lebih dari 1 km di sisi dekat Bulan.[59] Beberapa kawah ini dinamakan menurut nama para pakar, ilmuwan, seniman, dan penjelajah.[60] Skala waktu geologi Bulan didasarkan pada peristiwa tubrukan yang paling hebat, termasuk Nectaris, Imbrium, dan Orientale, dengan struktur yang dicirikan oleh lingkaran yang terbentuk dari materi yang menguap, biasanya berdiamater ratusan hingga ribuan kilometer.[61] Kurangnya aktivitas atmosfer, cuaca, dan proses geologi terkini membuktikan bahwa kawah-kawah ini masih dalam kondisi baik. Meskipun hanya sedikit kawah yang diketahui asal usul pembentukannya, kawah-kawah ini tetap berguna untuk menentukan usia relatif Bulan. Karena kawah tubrukan menumpuk pada tingkat yang hampir konstan, menghitung jumlah kawah per satuan luas dapat digunakan untuk memperkirakan usia permukaan Bulan.[61] Usia radiometrik batuan kawah yang dibawa oleh misi Apollo berkisar dari 3,8 sampai 4,1 miliar tahun; ini digunakan untuk menjelaskan waktu terjadinya tubrukan Bombardemen Berat Terakhir.[62]

Dataran yang menyelimuti bagian atas kerak Bulan adalah permukaan yang sangat terkominusi (terpecah menjadi partikel yang lebih kecil) dan lapisan permukaan kebun kawah bernama regolith, yang terbentuk akibat proses tubrukan. Regolith yang paling halus, yakni tanah Bulan dari kaca silikon dioksida, memiliki tekstur seperti salju dan berbau seperti mesiu.[63] Regolith di permukaan yang lebih tua umumnya lebih tebal daripada permukaan yang lebih muda; ketebalannya bervariasi, dari 10-20 m di dataran tinggi dan 3-5 m di maria.[64] Di bawah lapisan regolith terdapat megaregolith, lapisan batuan fraktur dengan ketebalan berkilo-kilometer. [65]

Ketersediaan air

Twenty degrees of latitude of the Moon's disk, completely covered in the overlapping circles of craters. The illumination angles are from all directions, keeping almost all the crater floors in sunlight, but a set of merged crater floors right at the south pole are completely shadowed.
Foto mozaik kutub selatan Bulan yang diambil oleh Clementine: perhatikan bagian gelap permanen di kutub.

Air cair tidak bisa bertahan di permukaan Bulan. Saat terkena radiasi Matahari, air dengan cepat akan terurai melalui proses yang dikenal dengan fotodisosiasi dan lenyap ke luar angkasa. Namun, sejak tahun 1960-an, para ilmuwan memperkirakan bahwa air es yang diangkut oleh komet saat terjadinya tubrukan atau yang dihasilkan oleh reaksi batuan Bulan yang kaya oksigen, dan hidrogen dari angin surya, meninggalkan jejak air yang mungkin bisa bertahan di kawah kutub selatan Bulan yang dingin dan gelap secara permanen.[66][67] Simulasi komputer menunjukkan bahwa hampir 14.000 km2 permukaan Bulan berada pada bagian kutub yang gelap permanen.[68] Ketersediaan air di Bulan dalam jumlah yang cukup adalah faktor penting dalam merencanakan proses kolonisasi Bulan karena akan menghemat biaya; rencana altenatif untuk mengangkut air dari Bumi akan menghabiskan biaya yang sangat besar.[69]

Bertahun-tahun yang lalu, jejak air telah ditemukan di permukaan Bulan.[70] Pada tahun 1994, eksperimen radar bistatik di wahana Clementine menunjukkan adanya kantong air beku di sekitar permukaan Bulan. Namun, pengamatan radar setelahnya oleh Arecibo menunjukkan bahwa penemuan tersebut mungkin adalah batuan yang terlontar dari kawah tubrukan muda.[71] Pada 1998, spektrometer neutron di wahana Lunar Prospector menemukan adanya konsentrasi hidrogen yang tinggi di lapisan regolith dengan kedalaman satu meter di wilayah kutub.[72] Pada 2008, analisis yang dilakukan terhadap batuan lava vulkanis yang dibawa ke Bumi oleh Apollo 15 menunjukkan adanya kandungan air dalam jumlah kecil pada interior batuan.[73]

Pada tahun 2008, wahana Chandrayaan-1 mengonfirmasi keberadaan air es di permukaan Bulan dengan menggunakan Moon Mineralogy Mapper. Spektrometer mengamati adanya garis penyerapan hidroksil di bawah sinar Matahari, yang membuktikan bahwa permukaan Bulan mengandung air es dalam jumlah besar. Wahana tersebut menunjukkan bahwa konsentrasi air es mungkin mencapai 1.000 ppm.[74] Pada tahun 2009, LCROSS mengirim 2.300 kg impaktor ke kawah kutub yang gelap permanen, dan mendeteksi sedikitnya terdapat 100 kg air dalam material ejektor.[75][76] Analisis data LCROSS lainnya menunjukkan bahwa jumlah air yang terdeteksi mencapai 155 kg.[77] Pada bulan Mei 2011, Erik Hauri melaporkan[78] adanya 615-1410 ppm inklusi leleh air pada sampel Bulan 74220, "tanah kaca jingga" dengan kandungan titanium tinggi yang berasal dari peristiwa vulkanis yang dikumpulkan dalam misi Apollo 17 pada tahun 1972. Inklusi ini tebentuk saat terjadinya letusan besar di Bulan sekitar 3,7 miliar tahun yang lalu. Konsentrasi ini setara dengan magma di mantel atas Bumi.

Medan gravitasi

Medan gravitasi Bulan telah diukur dengan menggunakan pelacakan pergeseran Doppler pada sinyal radio yang dipancarkan oleh pesawat ruang angkasa yang mengorbit Bulan. Bentuk gravitasi Bulan yang utama adalah konmas, anomali gravitasi positif yang terkait dengan beberapa basin tubrukan besar, sebagian disebabkan oleh aliran lava basaltik mare padat yang memenuhi basin tersebut.[79][80] Anomali ini sangat memengaruhi orbit pesawat luar angkasa di sekitar Bulan. Terdapat beberapa perdebatan mengenai gravitasi Bulan: lava yang mengalir dengan sendirinya tidak bisa menjelaskan bentuk gravitasi Bulan, dan beberapa konmas yang ada sama sekali tidak terkait dengan vulkanisme mare.[81]

Medan magnet

Bulan memiliki medan magnet eksternal sekitar 1–100 nanotesla, kurang dari seperseratus medan magnet Bumi. Bulan tidak memiliki medan magnet dipolar global, melainkan dihasilkan oleh geodinamo inti logam cair, dan hanya memiliki magnetisasi kerak, yang mungkin sudah ada pada awal sejarah Bulan ketika geodinamo masih beroperasi.[82][83] Selain itu, beberapa sisa magnetisasi berasal dari medan magnet sementara yang dihasilkan ketika terjadinya peristiwa tubrukan hebat, dengan melalui perluasan plasma yang dihasilkan oleh tubrukan. Hipotesis ini didukung oleh magnetisasi kerak yang berlokasi di dekat antipode basin tubrukan besar.[84]

Atmosfer

Saat matahari terbit dan terbenam, banyak awak Apollo yang melihat cahaya terang di permukaan Bulan.[85]

Bulan memiliki atmosfer yang sangat renggang, bahkan hampir hampa, dengan massa total kurang dari 10 ton metrik.[86] Tekanan permukaannya adalah sekitar 3 × 10−15 atm (0,3 nPa); ukurannya bervariasi menurut hari Bulan. Sumber atmosfer Bulan meliputi pelepasan gas dan pelepasan atom akibat bombardemen tanah Bulan oleh ion angin surya.[6][87] Unsur-unsur yang terkandung pada atmosfer Bulan adalah sodium dan potasium, yang dihasilkan oleh pelepasan atom; unsur ini juga ditemukan pada atmosfer Merkurius dan Io. Unsur lainnya termasuk helium-4 yang dihasilkan dari angin surya; serta argon-40, radon-222, dan polonium-210, yang dilepaskan ke angkasa setelah dihasilkan melalui proses peluruhan radioaktif di dalam kerak dan mantel.[88][89] Tidak adanya keberadaan spesies netral (atom atau molekul) di atmosfer seperti oksigen, nitrogen, karbon, hidrogen dan magnesium, yang terdapat pada regolith, masih belum terjelaskan.[88] Uap air terdeteksi oleh Chandrayaan-1 dan kandungannya bervariasi menurut garis lintang, dengan titik maksimum ~60–70 derajat; uap air ini diduga dihasilkan melalui proses sublimasi air es di regolith.[90] Gas-gas ini bisa kembali ke regolith akibat gravitasi Bulan atau lenyap ke luar angkasa, baik melalui tekanan radiasi surya atau, jika terionisasi, tersapu oleh medan magnet angin surya.[88]

Musim

Kemiringan sumbu Bulan terhadap ekliptika hanya 1,5424°,[91] jauh lebih kecil dari Bumi (23,44°). Karena hal ini, variasi iluminasi surya pada Bulan memiliki musim yang jauh lebih sedikit, dan detail topografi memiliki peran penting dalam efek perubahan musim.[92] Berdasarkan foto yang diambil oleh wahana Clementine pada tahun 1994, terdapat empat wilayah pegunungan di pinggiran kawah Peary di kutub utara Bulan, yang diduga tetap disinari oleh Matahari di sepanjang hari Bulan, menciptakan puncak cahaya abadi. Tidak ada wilayah seperti itu yang terdapat di kutub selatan Bulan. Selain itu, juga terdapat wilayah yang tidak menerima cahaya secara permanen di bagian bawah kawah kutub,[68] dan kawah-kawah gelap ini suhunya sangat dingin; Lunar Reconnaissance Orbiter mencatat suhu musim panas terendah di kawah kutub selatan mencapai 35 K (−238 °C)[93] dan hampir 26 K saat terjadinya titik balik matahari musim dingin di kawah Hermite di kutub utara. Ini adalah suhu terdingin di Tata Surya yang pernah diukur oleh wahana antariksa, bahkan lebih dingin dari suhu permukaan Pluto.[92]

Hubungan dengan Bumi

Earth has a pronounced axial tilt; the Moon's orbit is not perpendicular to Earth's axis, but lies close to Earth's orbital plane.
Skema sistem Bumi-Bulan (tanpa skala konsisten)

Orbit

Bulan menyelesaikan orbit lengkap mengelilingi Bumi setiap 27,3 hari sekali[g] (periode sideris). Akan tetapi, karena Bumi bergerak pada orbitnya mengelilingi Matahari pada waktu yang bersamaan, dibutuhkan waktu yang sedikit lebih lama bagi Bulan untuk memperlihatkan fase yang sama ke Bumi, yaitu sekitar 29,5 hari[h] (periode sinodik).[49] Tidak seperti kebanyakan satelit planet lainnya, orbit Bulan lebih dekat ke bidang ekliptika daripada ke bidang khatulistiwa planet. Orbit Bulan diperturbasi oleh Matahari dan Bumi dalam cara yang halus dan kompleks. Misalnya, bidang pergerakan orbit Bulan secara bertahap mengalami pergeseran, yang memengaruhi aspek pergerakan Bulan lainnya. Fenomena ini secara matematis dijelaskan oleh Hukum Cassini.[94]

Skala perbandingan ukuran dan jarak Bumi-Bulan. Garis kuning merupakan perjalanan cahaya dari Bumi ke Bulan (sekitar 400.000 km atau 250.000 mil) dalam 1,26 detik.

Ukuran relatif

Ukuran Bulan relatif besar jika dibandingkan dengan ukuran Bumi, yakni seperempat dari diameter dan 1/81 dari massa Bumi.[49] Bulan adalah satelit alami terbesar di Tata Surya menurut ukuran relatif planet yang diorbitnya, meskipun Charon lebih besar untuk ukuran planet katai Pluto, yakni sekitar 1/9 dari massa Pluto.[95] Meskipun demikian, Bumi dan Bulan masih dianggap sebagai sistem planet-satelit, bukannya sistem planet ganda, karena barisentrum kedua benda langit ini berlokasi 1.700 km (sekitar seperempat radius Bumi) di bawah permukaan Bumi.[96]

Penampakan dari Bumi

Penampakan Bulan di langit barat High Desert (California)

Bulan berada pada rotasi sinkron; waktu yang dibutuhkan oleh Bulan untuk berputar pada porosnya kira-kira sama dengan waktu yang dibutuhkan untuk mengorbit Bumi. Oleh sebab itu, Bulan selalu memperlihatkan sisi yang sama pada Bumi. Pada awal sejarahnya, perputaran Bulan lebih lambat dan terjadi penguncian pasang surut pada orientasi ini, terutama karena efek friksional deformasi pasang surut yang dipicu oleh Bumi.[97] Sisi Bulan yang menghadap Bumi disebut dengan sisi dekat, sedangkan sisi yang membelakangi Bumi disebut dengan sisi jauh. Sisi jauh seringkali disalah artikan sebagai "sisi gelap", meskipun pada kenyataannya sisi ini diterangi oleh cahaya sebagaimana halnya sisi dekat. Sekali dalam sebulan, sisi dekat yang gelap bisa disaksikan dari Bumi ketika terjadinya fase bulan baru.[98]

Bulan memiliki albedo yang sangat rendah, dengan tingkat kecerahan yang sedikit lebih terang dari aspal hitam. Meskipun demikian, Bulan adalah benda langit yang paling terang di langit setelah Matahari.[49][i] Hal ini antara lain disebabkan oleh peningkatan kecerahan akibat efek oposisi; pada fase bulan seperempat, hanya sepersepuluh bagian Bulan yang terang, bukannya seperempat.[99] Selain itu, konstansi warna pada sistem visual Bulan mengkalibrasi hubungan antara warna objek dan sekitarnya; karena langit di sekitar Bulan relatif gelap, Bulan yang diterangi Matahari tampak sebagai benda langit yang terang. Bagian pinggir bulan purnama tampak sama terang dengan bagian tengahnya, tanpa pengelaman tungkai, karena sifat reflektif dari tanah Bulan, yang merefleksikan lebih banyak cahaya ke arah Matahari daripada ke arah lainnya. Bulan terlihat lebih besar saat berada dekat dengan cakrawala, tetapi hal ini hanyalah efek psikologis semata, yang dikenal dengan ilusi Bulan (pertama kali dijelaskan pada abad ke-7 SM).[100] Besaran busur rata-rata bulan purnama adalah sekitar 0,52° di langit, kira-kira sama dengan ukuran Matahari yang terlihat dari Bumi (lihat gerhana).

Perubahan sudut antara arah pencahayaan oleh Matahari dan penampakan dari Bumi dalam waktu sebulan, dan fase Bulan yang dihasilkannya.

Ketinggian Bulan di langit bervariasi; meskipun memiliki batas yang hampir sama dengan Matahari, ketinggiannya berubah seiring dengan fase Bulan dan perubahan musim dalam setahun, dengan ketinggian tertinggi terjadi saat bulan purnama pada waktu musim dingin.

Bulan sebagai penanda waktu

Berkas:Lunar moon.jpg
Fase bulan

Bulan purnama adalah keadaan ketika Bulan tampak bulat sempurna dari Bumi. Pada saat itu, Bumi terletak hampir segaris di antara Matahari dan Bulan, sehingga seluruh permukaan Bulan yang diterangi Matahari terlihat jelas dari arah Bumi.

Kebalikannya adalah saat bulan mati, yaitu saat Bulan terletak pada hampir segaris di antara Matahari dan Bumi, sehingga yang 'terlihat' dari Bumi adalah sisi belakang Bulan yang gelap, alias tidak nampak apa-apa.

Di antara kedua waktu itu terdapat keadaan bulan separuh dan bulan sabit, yakni pada saat posisi Bulan terhadap Bumi membentuk sudut tertentu terhadap garis Bumi - Matahari. Pada saat itu, hanya sebagian permukaan Bulan yang disinari Matahari yang terlihat dari Bumi.

Fase-fase bulan

Referensi

Catatan
  1. ^ The maximum value is given based on scaling of the brightness from the value of −12.74 given for an equator to Moon-centre distance of 378 000 km in the NASA factsheet reference to the minimum Earth–Moon distance given there, after the latter is corrected for Earth's equatorial radius of 6 378 km, giving 350 600 km. The minimum value (for a distant new moon) is based on a similar scaling using the maximum Earth–Moon distance of 407 000 km (given in the factsheet) and by calculating the brightness of the earthshine onto such a new moon. The brightness of the earthshine is [ Earth albedo × (Earth radius / Radius of Moon's orbit)2 ] relative to the direct solar illumination that occurs for a full moon. (Earth albedo = 0.367; Earth radius = (polar radius × equatorial radius)½ = 6 367 km.)
  2. ^ The range of angular size values given are based on simple scaling of the following values given in the fact sheet reference: at an Earth-equator to Moon-centre distance of 378 000 km, the angular size is 1896 arcseconds. The same fact sheet gives extreme Earth–Moon distances of 407 000 km and 357 000 km. For the maximum angular size, the minimum distance has to be corrected for Earth's equatorial radius of 6 378 km, giving 350 600 km.
  3. ^ Lucey et al. (2006) give 107 particles cm−3 by day and 105 particles cm−3 by night. Along with equatorial surface temperatures of 390 K by day and 100 K by night, the ideal gas law yields the pressures given in the infobox (rounded to the nearest order of magnitude): 10−7 Pa by day and 10−10 Pa by night.
  4. ^ There are a number of near-Earth asteroids, including 3753 Cruithne, that are co-orbital with Earth: their orbits bring them close to Earth for periods of time but then alter in the long term (Morais et al, 2002). These are quasi-satellites – they are not moons as they do not orbit Earth. For more information, see Other moons of Earth.
  5. ^ Charon is proportionally larger in comparison to Pluto, but Pluto has been reclassified as a dwarf planet.
  6. ^ This age is calculated from isotope dating of lunar rocks.
  7. ^ Kesalahan pengutipan: Tag <ref> tidak sah; tidak ditemukan teks untuk ref bernama orbpd
  8. ^ Kesalahan pengutipan: Tag <ref> tidak sah; tidak ditemukan teks untuk ref bernama synpd
  9. ^ Kesalahan pengutipan: Tag <ref> tidak sah; tidak ditemukan teks untuk ref bernama brightness
Rujukan
  1. ^ a b c d e f g h i j k l Kesalahan pengutipan: Tag <ref> tidak sah; tidak ditemukan teks untuk ref bernama W06
  2. ^ a b Kesalahan pengutipan: Tag <ref> tidak sah; tidak ditemukan teks untuk ref bernama Lang2011
  3. ^ a b c d e Kesalahan pengutipan: Tag <ref> tidak sah; tidak ditemukan teks untuk ref bernama NSSDC
  4. ^ Kesalahan pengutipan: Tag <ref> tidak sah; tidak ditemukan teks untuk ref bernama Saari
  5. ^ Kesalahan pengutipan: Tag <ref> tidak sah; tidak ditemukan teks untuk ref bernama Vasavada1999
  6. ^ a b c Kesalahan pengutipan: Tag <ref> tidak sah; tidak ditemukan teks untuk ref bernama L06
  7. ^ Kesalahan pengutipan: Tag <ref> tidak sah; tidak ditemukan teks untuk ref bernama Morais2002
  8. ^ http://lasp.colorado.edu/life/GEOL5835/Moon_presentation_19Sept.pdf
  9. ^ "Naming Astronomical Objects: Spelling of Names". International Astronomical Union. Diakses tanggal 29 March 2010. 
  10. ^ Kesalahan pengutipan: Tag <ref> tidak sah; tidak ditemukan teks untuk ref bernama PN-FAQ
  11. ^ Kesalahan pengutipan: Tag <ref> tidak sah; tidak ditemukan teks untuk ref bernama barnhart1995
  12. ^ Kesalahan pengutipan: Tag <ref> tidak sah; tidak ditemukan teks untuk ref bernama oed
  13. ^ Kleine, T. (2005). "Hf–W Chronometry of Lunar Metals and the Age and Early Differentiation of the Moon". Science. 310 (5754): 1671–1674. Bibcode:2005Sci...310.1671K. doi:10.1126/science.1118842. PMID 16308422. 
  14. ^ "Carnegie Institution for Science research". Diakses tanggal 2013-10-12. 
  15. ^ "Phys.org's account of Carlson's presentation to the Royal Society". Diakses tanggal 2013-10-13. 
  16. ^ Kesalahan pengutipan: Tag <ref> tidak sah; tidak ditemukan teks untuk ref bernama Binder
  17. ^ a b Kesalahan pengutipan: Tag <ref> tidak sah; tidak ditemukan teks untuk ref bernama BotM
  18. ^ Kesalahan pengutipan: Tag <ref> tidak sah; tidak ditemukan teks untuk ref bernama Mitler
  19. ^ Stevenson, D.J. (1987). "Origin of the moon–The collision hypothesis". Annual Review of Earth and Planetary Sciences. 15 (1): 271–315. Bibcode:1987AREPS..15..271S. doi:10.1146/annurev.ea.15.050187.001415. 
  20. ^ Kesalahan pengutipan: Tag <ref> tidak sah; tidak ditemukan teks untuk ref bernama taylor1998
  21. ^ Canup, R. (2001). "Origin of the Moon in a giant impact near the end of Earth's formation". Nature. 412 (6848): 708–712. Bibcode:2001Natur.412..708C. doi:10.1038/35089010. PMID 11507633. 
  22. ^ "Earth-Asteroid Collision Formed Moon Later Than Thought". News.nationalgeographic.com. 28 October 2010. Diakses tanggal 7 May 2012. 
  23. ^ http://digitalcommons.arizona.edu/objectviewer?o=uadc://azu_maps/Volume43/NumberSupplement/Touboul.pdf
  24. ^ Touboul, M.; Kleine, T.; Bourdon, B.; Palme, H.; Wieler, R. (2007). "Late formation and prolonged differentiation of the Moon inferred from W isotopes in lunar metals". Nature. 450 (7173): 1206–9. Bibcode:2007Natur.450.1206T. doi:10.1038/nature06428. PMID 18097403. 
  25. ^ Kesalahan pengutipan: Tag <ref> tidak sah; tidak ditemukan teks untuk ref bernama Pahlevan2007
  26. ^ Nield, Ted (2009). "Moonwalk (summary of meeting at Meteoritical Society's 72nd Annual Meeting, Nancy, France)". Geoscientist. 19: 8. 
  27. ^ a b Kesalahan pengutipan: Tag <ref> tidak sah; tidak ditemukan teks untuk ref bernama Warren1985
  28. ^ Tonks, W. Brian (1993). "Magma ocean formation due to giant impacts". Journal of Geophysical Research. 98 (E3): 5319–5333. Bibcode:1993JGR....98.5319T. doi:10.1029/92JE02726. 
  29. ^ Daniel Clery (11 October 2013). "Impact Theory Gets Whacked". Science. 342: 183. 
  30. ^ Wiechert, U.; et al. (October 2001). "Oxygen Isotopes and the Moon-Forming Giant Impact". Science. Science (jurnal). 294 (12): 345–348. Bibcode:2001Sci...294..345W. doi:10.1126/science.1063037. PMID 11598294. Diakses tanggal 2009-07-05. 
  31. ^ Pahlevan, Kaveh; Stevenson, David (October 2007). "Equilibration in the Aftermath of the Lunar-forming Giant Impact". EPSL. 262 (3–4): 438–449. arXiv:1012.5323alt=Dapat diakses gratis. Bibcode:2007E&PSL.262..438P. doi:10.1016/j.epsl.2007.07.055. 
  32. ^ Kesalahan pengutipan: Tag <ref> tidak sah; tidak ditemukan teks untuk ref bernama test
  33. ^ Taylor, Stuart Ross (1975). Lunar science: A post-Apollo view. New York, Pergamon Press, Inc. hlm. 64. 
  34. ^ "NASA Research Team Reveals Moon Has Earth-Like Core". NASA. January 6, 2011. 
  35. ^ Nemchin, A.; Timms, N.; Pidgeon, R.; Geisler, T.; Reddy, S.; Meyer, C. (2009). "Timing of crystallization of the lunar magma ocean constrained by the oldest zircon". Nature Geoscience. 2 (2): 133–136. Bibcode:2009NatGe...2..133N. doi:10.1038/ngeo417. 
  36. ^ a b Kesalahan pengutipan: Tag <ref> tidak sah; tidak ditemukan teks untuk ref bernama S06
  37. ^ Kesalahan pengutipan: Tag <ref> tidak sah; tidak ditemukan teks untuk ref bernama Schubert2004
  38. ^ Williams, J.G. (2006). "Lunar laser ranging science: Gravitational physics and lunar interior and geodesy". Advances in Space Research. 37 (1): 6771. arXiv:gr-qc/0412049alt=Dapat diakses gratis. Bibcode:2006AdSpR..37...67W. doi:10.1016/j.asr.2005.05.013. 
  39. ^ "Landscapes from the ancient and eroded lunar far side". esa. Diakses tanggal 15 February 2010. 
  40. ^ Spudis, Paul D.; Cook, A.; Robinson, M.; Bussey, B.; Fessler, B.; Cook; Robinson; Bussey; Fessler (January 1998). "Topography of the South Polar Region from Clementine Stereo Imaging". Workshop on New Views of the Moon: Integrated Remotely Sensed, Geophysical, and Sample Datasets: 69. Bibcode:1998nvmi.conf...69S. 
  41. ^ a b c Kesalahan pengutipan: Tag <ref> tidak sah; tidak ditemukan teks untuk ref bernama Spudis1994
  42. ^ Pieters, C.M.; Tompkins, S.; Head, J.W.; Hess, P.C. (1997). "Mineralogy of the Mafic Anomaly in the South Pole‐Aitken Basin: Implications for excavation of the lunar mantle". Geophysical Research Letters. 24 (15): 1903–1906. Bibcode:1997GeoRL..24.1903P. doi:10.1029/97GL01718. 
  43. ^ Taylor, G.J. (17 July 1998). "The Biggest Hole in the Solar System". Planetary Science Research Discoveries, Hawai'i Institute of Geophysics and Planetology. Diakses tanggal 12 April 2007. 
  44. ^ Schultz, P. H. (March 1997). "Forming the south-pole Aitken basin – The extreme games". Conference Paper, 28th Annual Lunar and Planetary Science Conference. 28: 1259. Bibcode:1997LPI....28.1259S. 
  45. ^ Wlasuk, Peter (2000). Observing the Moon. Springer. hlm. 19. ISBN 978-1-85233-193-1. 
  46. ^ Norman, M. (21 April 2004). "The Oldest Moon Rocks". Planetary Science Research Discoveries. Diakses tanggal 12 April 2007. 
  47. ^ Varricchio, L. (2006). Inconstant Moon. Xlibris Books. ISBN 978-1-59926-393-9. 
  48. ^ Head, L.W.J.W. (2003). "Lunar Gruithuisen and Mairan domes: Rheology and mode of emplacement". Journal of Geophysical Research. 108 (E2): 5012. Bibcode:2003JGRE..108.5012W. doi:10.1029/2002JE001909. Diakses tanggal 12 April 2007. 
  49. ^ a b c d Kesalahan pengutipan: Tag <ref> tidak sah; tidak ditemukan teks untuk ref bernama worldbook
  50. ^ Gillis, J.J.; Spudis (1996). "The Composition and Geologic Setting of Lunar Far Side Maria". Lunar and Planetary Science. 27: 413–404. Bibcode:1996LPI....27..413G. 
  51. ^ Lawrence; D. J.; et al. (11 August 1998). "Global Elemental Maps of the Moon: The Lunar Prospector Gamma-Ray Spectrometer". Science. HighWire Press. 281 (5382): 1484–1489. Bibcode:1998Sci...281.1484L. doi:10.1126/science.281.5382.1484. ISSN 1095-9203. PMID 9727970. Diakses tanggal 29 August 2009. 
  52. ^ Taylor, G.J. (31 August 2000). "A New Moon for the Twenty-First Century". Planetary Science Research Discoveries, Hawai'i Institute of Geophysics and Planetology. Diakses tanggal 12 April 2007. 
  53. ^ a b Kesalahan pengutipan: Tag <ref> tidak sah; tidak ditemukan teks untuk ref bernama Papike
  54. ^ a b Kesalahan pengutipan: Tag <ref> tidak sah; tidak ditemukan teks untuk ref bernama Hiesinger
  55. ^ Munsell, K. (4 December 2006). "Majestic Mountains". Solar System Exploration. NASA. Diakses tanggal 12 April 2007. 
  56. ^ Richard Lovett. "Early Earth may have had two moons : Nature News". Nature.com. Diakses tanggal 2012-11-01. 
  57. ^ "Was our two-faced moon in a small collision?". Theconversation.edu.au. Diakses tanggal 2012-11-01. 
  58. ^ Melosh, H. J. (1989). Impact cratering: A geologic process. Oxford Univ. Press. ISBN 978-0-19-504284-9. 
  59. ^ "Moon Facts". SMART-1. European Space Agency. 2010. Diakses tanggal 12 May 2010. 
  60. ^ Kesalahan pengutipan: Tag <ref> tidak sah; tidak ditemukan teks untuk ref bernama gazetteer
  61. ^ a b Kesalahan pengutipan: Tag <ref> tidak sah; tidak ditemukan teks untuk ref bernama geologic
  62. ^ Hartmann, William K.; Quantin, Cathy; Mangold, Nicolas (2007). "Possible long-term decline in impact rates: 2. Lunar impact-melt data regarding impact history". Icarus. 186 (1): 11–23. Bibcode:2007Icar..186...11H. doi:10.1016/j.icarus.2006.09.009. 
  63. ^ "The Smell of Moondust". NASA. 30 January 2006. Diakses tanggal 15 March 2010. 
  64. ^ Heiken, G. (1991). Lunar Sourcebook, a user's guide to the Moon. New York: Cambridge University Press. hlm. 736. ISBN 978-0-521-33444-0. 
  65. ^ Rasmussen, K.L. (1985). "Megaregolith thickness, heat flow, and the bulk composition of the Moon". Nature. 313 (5998): 121–124. Bibcode:1985Natur.313..121R. doi:10.1038/313121a0. 
  66. ^ Kesalahan pengutipan: Tag <ref> tidak sah; tidak ditemukan teks untuk ref bernama Margot1999
  67. ^ Ward, William R. (1 August 1975). "Past Orientation of the Lunar Spin Axis". Science. 189 (4200): 377–379. Bibcode:1975Sci...189..377W. doi:10.1126/science.189.4200.377. PMID 17840827. 
  68. ^ a b Kesalahan pengutipan: Tag <ref> tidak sah; tidak ditemukan teks untuk ref bernama M03
  69. ^ Kesalahan pengutipan: Tag <ref> tidak sah; tidak ditemukan teks untuk ref bernama seedhouse2009
  70. ^ Kesalahan pengutipan: Tag <ref> tidak sah; tidak ditemukan teks untuk ref bernama moonwater_18032010
  71. ^ Spudis, P. (6 November 2006). "Ice on the Moon". The Space Review. Diakses tanggal 12 April 2007. 
  72. ^ Kesalahan pengutipan: Tag <ref> tidak sah; tidak ditemukan teks untuk ref bernama Feldman1998
  73. ^ Kesalahan pengutipan: Tag <ref> tidak sah; tidak ditemukan teks untuk ref bernama Saal2008
  74. ^ Kesalahan pengutipan: Tag <ref> tidak sah; tidak ditemukan teks untuk ref bernama Pieters2009
  75. ^ Kesalahan pengutipan: Tag <ref> tidak sah; tidak ditemukan teks untuk ref bernama Planetary
  76. ^ Kesalahan pengutipan: Tag <ref> tidak sah; tidak ditemukan teks untuk ref bernama Colaprete
  77. ^ Kesalahan pengutipan: Tag <ref> tidak sah; tidak ditemukan teks untuk ref bernama Colaprete2010
  78. ^ Kesalahan pengutipan: Tag <ref> tidak sah; tidak ditemukan teks untuk ref bernama hauri
  79. ^ Muller, P. (1968). "Mascons: lunar mass concentrations". Science. 161 (3842): 680–684. Bibcode:1968Sci...161..680M. doi:10.1126/science.161.3842.680. PMID 17801458. 
  80. ^ Richard A. Kerr (12 April 2013). "The Mystery of Our Moon's Gravitational Bumps Solved?". Science. 340: 128. 
  81. ^ Konopliv, A. (2001). "Recent gravity models as a result of the Lunar Prospector mission". Icarus. 50 (1): 1–18. Bibcode:2001Icar..150....1K. doi:10.1006/icar.2000.6573. 
  82. ^ Kesalahan pengutipan: Tag <ref> tidak sah; tidak ditemukan teks untuk ref bernama GB2009
  83. ^ "Magnetometer / Electron Reflectometer Results". Lunar Prospector (NASA). 2001. Diakses tanggal 17 March 2010. 
  84. ^ Hood, L.L. (1991). "Formation of magnetic anomalies antipodal to lunar impact basins: Two-dimensional model calculations". J. Geophys. Res. 96 (B6): 9837–9846. Bibcode:1991JGR....96.9837H. doi:10.1029/91JB00308. 
  85. ^ "Moon Storms". Science.nasa.gov. 2013-09-27. Diakses tanggal 2013-10-03. 
  86. ^ Globus, Ruth (1977). "Chapter 5, Appendix J: Impact Upon Lunar Atmosphere". Dalam Richard D. Johnson & Charles Holbrow. Space Settlements: A Design Study. NASA. Diakses tanggal 17 March 2010. 
  87. ^ Crotts, Arlin P.S. (2008). "Lunar Outgassing, Transient Phenomena and The Return to The Moon, I: Existing Data" (PDF). The Astrophysical Journal. Department of Astronomy, Columbia University. 687: 692. arXiv:0706.3949alt=Dapat diakses gratis. Bibcode:2008ApJ...687..692C. doi:10.1086/591634. Diakses tanggal 29 September 2009. 
  88. ^ a b c Kesalahan pengutipan: Tag <ref> tidak sah; tidak ditemukan teks untuk ref bernama Stern1999
  89. ^ Lawson, S. (2005). "Recent outgassing from the lunar surface: the Lunar Prospector alpha particle spectrometer". J. Geophys. Res. 110 (E9): 1029. Bibcode:2005JGRE..11009009L. doi:10.1029/2005JE002433. 
  90. ^ Kesalahan pengutipan: Tag <ref> tidak sah; tidak ditemukan teks untuk ref bernama Sridharan2010
  91. ^ Kesalahan pengutipan: Tag <ref> tidak sah; tidak ditemukan teks untuk ref bernama SolarViews
  92. ^ a b Kesalahan pengutipan: Tag <ref> tidak sah; tidak ditemukan teks untuk ref bernama bbc
  93. ^ "Diviner News". UCLA. 17 September 2009. Diakses tanggal 17 March 2010. 
  94. ^ Kesalahan pengutipan: Tag <ref> tidak sah; tidak ditemukan teks untuk ref bernama Beletskii2
  95. ^ "Space Topics: Pluto and Charon". The Planetary Society. Diakses tanggal 6 April 2010. 
  96. ^ "Planet Definition Questions & Answers Sheet". International Astronomical Union. 2006. Diakses tanggal 24 March 2010. 
  97. ^ Alexander, M. E. (1973). "The Weak Friction Approximation and Tidal Evolution in Close Binary Systems". Astrophysics and Space Science. 23 (2): 459–508. Bibcode:1973Ap&SS..23..459A. doi:10.1007/BF00645172. 
  98. ^ Phil Plait. "Dark Side of the Moon". Bad Astronomy:Misconceptions. Diakses tanggal 15 February 2010. 
  99. ^ Kesalahan pengutipan: Tag <ref> tidak sah; tidak ditemukan teks untuk ref bernama Moon
  100. ^ Hershenson, Maurice (1989). The Moon illusion. Routledge. hlm. 5. ISBN 978-0-8058-0121-7. 

Templat:Link FA Templat:Link FA Templat:Link FA Templat:Link FA Templat:Link FA Templat:Link FA Templat:Link FA Templat:Link FA Templat:Link FA Templat:Link FA Templat:Link FA Templat:Link FA Templat:Link GA Templat:Link FA