Lompat ke isi

Gempa bumi: Perbedaan antara revisi

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Konten dihapus Konten ditambahkan
Menolak perubahan teks terakhir (oleh Awesome.zane) dan mengembalikan revisi 8134464 oleh Denny eR Ge
Dwianto08 (bicara | kontrib)
Tag: Suntingan perangkat seluler Suntingan peramban seluler
 
(480 revisi antara oleh lebih dari 100 100 pengguna tak ditampilkan)
Baris 1: Baris 1:
{{Redirect|Gempa bumi di Indonesia|Daftar gempa bumi di Indonesia|Daftar gempa bumi di Indonesia}}
[[Berkas:Quake epicenters 1963-98.png|thumb|300px|Pusat-pusat gempa di seluruh dunia pada tahun 1963-1998.]]
{{For|Gempa bumi pada tahun ini|Daftar gempa bumi tahun {{CURRENTYEAR}}}}
[[Berkas:Global plate motion 2008-04-17.jpg|thumb|300px|Lempengan tektonik gerakan global]]
[[File:Map of earthquakes 1900-.svg|thumb|280px|Gempa bumi dengan skala [[Skala magnitudo seismik|magnitudo]] 6,0+ dari tahun 1900 sampai 2017]]
[[File:JogjaEarthquake27Mei2006-3.jpg|thumb|280px|Bangunan hancur akibat dari [[Gempa bumi Yogyakarta Mei 2006]]]]


'''Gempa bumi''' ({{lang-eng|'''Earthquake'''}}) adalah fenomena guncangan permukaan tanah akibat pelepasan energi secara tiba-tiba di bawah [[litosfer]] sehingga menimbulkan gelombang seismik. Intensitas gempa bumi bisa bermacam-macam, mulai dari gempa yang sangat lemah dan tidak dapat dirasakan, hingga gempa bumi dahsyat yang melempar benda-benda ke udara, merusak infrastruktur penting, dan menimbulkan kehancuran di seluruh kota. Aktivitas gempa bumi di suatu lokasi tertentu adalah laju rata-rata pelepasan energi seismik per satuan volume.
'''Gempa bumi''' adalah getaran atau guncangan yang terjadi di permukaan [[bumi]] akibat pelepasan energi dari dalam secara tiba-tiba yang menciptakan [[gelombang seismik]]. Gempa Bumi biasa disebabkan oleh pergerakan [[kerak Bumi]] (lempeng Bumi). Frekuensi suatu wilayah, mengacu pada jenis dan ukuran gempa Bumi yang di alami selama periode waktu. Gempa Bumi diukur dengan menggunakan alat [[Seismometer]]. [[Skala kekuatan Moment|''Moment'' magnitudo]] adalah skala yang paling umum di mana gempa Bumi terjadi untuk seluruh dunia. [[Skala Richter|Skala Rickter]] adalah skala yang di laporkan oleh observatorium seismologi nasional yang di ukur pada skala besarnya lokal 5 magnitude. kedua skala yang sama selama rentang angka mereka valid. gempa 3 magnitude atau lebih sebagian besar hampir tidak terlihat dan besar nya 7 lebih berpotensi menyebabkan kerusakan serius di daerah yang luas, tergantung pada kedalaman gempa. Gempa Bumi terbesar bersejarah besarnya telah lebih dari 9, meskipun tidak ada batasan besarnya. Gempa Bumi besar terakhir besarnya 9,0 atau lebih besar adalah [[Gempa bumi dan tsunami Sendai 2011|9,0 magnitudo gempa di Jepang pada tahun 2011]] (per Maret 2011), dan itu adalah gempa Jepang terbesar sejak pencatatan dimulai. Intensitas getaran diukur pada modifikasi [[skala intensitas Mercalli|Skala Mercalli]].


Gempa bumi dapat terjadi secara alami atau disebabkan oleh aktivitas manusia, seperti [[penambangan]], fracking, dan uji coba [[nuklir]]. Titik awal pecahnya disebut [[hiposenter]] atau fokus, sedangkan permukaan tanah yang berada tepat di atasnya disebut [[episentrum]]. Gempa bumi dapat disebabkan oleh kesalahan geologis, atau oleh aktivitas [[gunung berapi]], tanah longsor, dan peristiwa lainnya. Frekuensi, jenis, dan ukuran gempa bumi di suatu wilayah menentukan aktivitas seismiknya, yang mencerminkan tingkat rata-rata pelepasan energi seismik.
== Jenis Gempa Bumi ==
Jenis gempa bumi dapat dibedakan berdasarkan:
=== Berdasarkan Penyebab ===
* '''[[Gempa bumi tektonik]]'''
Gempa Bumi ini disebabkan oleh adanya aktivitas tektonik, yaitu pergeseran lempeng-lempeng tektonik secara mendadak yang mempunyai kekuatan dari yang sangat kecil hingga yang sangat besar. Gempa bumi ini banyak menimbulkan kerusakan atau bencana alam di Bumi, getaran gempa Bumi yang kuat mampu menjalar keseluruh bagian Bumi. Gempa bumi tektonik disebabkan oleh pelepasan [[tenaga]] yang terjadi karena pergeseran lempengan [[plat tektonik]] seperti layaknya gelang karet ditarik dan dilepaskan dengan tiba-tiba.


Peristiwa gempa bumi yang paling terkenal adalah [[gempa bumi dan tsunami Samudra Hindia 2004]], memakan lebih dari 230.000 korban jiwa, dan gempa bumi terkuat yang pernah tercatat yaitu [[gempa bumi Valdivia 1960]] di Chili dengan skala 9,5 {{M|w}}. Salah satu gempa bumi paling mematikan dalam sejarah adalah [[Gempa bumi Shaanxi 1556]], yang terjadi pada tanggal 23 Januari 1556 di Provinsi [[Shaanxi]], Tiongkok. Lebih dari 830.000 orang meninggal.<ref>{{cite web |url=https://earthquake.usgs.gov/earthquakes/world/most_destructive.php |title=Earthquakes with 50,000 or More Deaths |archive-url=https://web.archive.org/web/20091101175733/http://earthquake.usgs.gov/earthquakes/world/most_destructive.php |archive-date=November 1, 2009 |url-status=dead |publisher=U.S. Geological Survey}}</ref> Sebagian besar penduduk tinggal di yaodong, sebuah bangunan berbahan batu dan tanah liat, banyak korban yang tewas ketika bangunan tersebut runtuh. [[Gempa bumi Tangshan 1976]], yang menewaskan antara 240.000 dan 655.000 orang, merupakan [[Daftar gempa bumi terkuat sepanjang sejarah#Gempa bumi paling Mematikan|gempa bumi paling mematikan]] dalam sejarah modern hingga saat ini.
* '''[[Gempa bumi tumbukan]]'''
Gempa Bumi ini diakibatkan oleh tumbukan meteor atau asteroid yang jatuh ke Bumi, jenis gempa Bumi ini jarang terjadi


Gempa bumi menimbulkan berbagai dampak, seperti guncangan tanah dan [[pencairan tanah]], yang mengakibatkan kerusakan besar dan korban jiwa. Jika episentrum gempa besar terletak di lepas pantai, dasar laut mungkin akan mengalami pergeseran yang cukup besar sehingga menyebabkan [[tsunami]]. Gempa bumi juga dapat memicu tanah longsor. Gempa bumi dipengaruhi oleh pergerakan [[lempeng tektonik]] di sepanjang [[Sesar (geologi)|sesar aktif]], termasuk sesar normal, sesar terbalik (dorong), dan sesar mendatar, dengan dinamika pelepasan energi dan patahan yang diatur oleh teori pantulan elastis.
* '''[[Gempa bumi runtuhan]]'''
Gempa Bumi ini biasanya terjadi pada daerah kapur ataupun pada daerah pertambangan, gempabumi ini jarang terjadi dan bersifat lokal.


== Terminologi ==
* '''[[Gempa bumi buatan]]'''
Gempa bumi dapat berlangsung dalam hitungan 10 hingga 30 detik. Dalam peristiwa [[gempa bumi berdorongan besar]], guncangan dapat berlangsung 5–7 menit, seperti pada peristiwa [[Gempa bumi Samudra Hindia 2004|gempa bumi Sumatra 2004]], yang berlangsung hingga 10 menit lamanya.
Gempa bumi buatan adalah gempa bumi yang disebabkan oleh aktivitas dari manusia, seperti peledakan dinamit, nuklir atau palu yang dipukulkan ke permukaan bumi.


Dalam pengertian yang paling umum, gempa bumi adalah peristiwa seismik apa pun—baik yang terjadi secara alami maupun yang disebabkan oleh manusia—yang menimbulkan [[gelombang seismik]]. Gempa bumi sebagian besar disebabkan oleh pecahnya [[Sesar (geologi)|patahan geologi]], namun juga disebabkan oleh peristiwa lain seperti aktivitas gunung berapi, [[tanah longsor]], ledakan ranjau, fracking, dan uji coba [[nuklir]]. Titik pecahnya awal suatu gempa disebut hiposenter atau fokusnya. [[Episentrum]] adalah titik di permukaan tanah tepat di atas [[hiposenter]].
* '''[[Gempa bumi vulkanik]] (gunung api)'''
Gempa Bumi ini terjadi akibat adanya aktivitas magma, yang biasa terjadi sebelum gunung api meletus. Apabila keaktifannya semakin tinggi maka akan menyebabkan timbulnya ledakan yang juga akan menimbulkan terjadinya gempa bumi. Gempa bumi tersebut hanya terasa di sekitar gunung api tersebut.


Aktivitas seismik suatu wilayah adalah frekuensi, jenis, dan ukuran gempa bumi yang dialami dalam kurun waktu tertentu. Kegempaan di suatu lokasi tertentu di bumi adalah laju rata-rata pelepasan energi seismik per satuan volume.
=== Berdasarkan Kedalaman ===
* '''Gempa bumi dalam'''
Gempa bumi dalam adalah gempa bumi yang hiposentrumnya berada lebih dari 300 km di bawah permukaan bumi (di dalam kerak bumi). Gempa bumi dalam pada umumnya tidak terlalu berbahaya.


===Latar belakang===
* '''Gempa bumi menengah'''
{{Lihat|Lempeng Tektonik}}
Gempa bumi menengah adalah gempa bumi yang hiposentrumnya berada antara 60 km sampai 300 km di bawah permukaan bumi.gempa bumi menengah pada umumnya menimbulkan kerusakan ringan dan getarannya lebih terasa.
[[Berkas:Plates tect2 id.svg|thumb|300px|Peta lempeng tektonik]]
[[Berkas:Global plate motion 2008-04-17.jpg|thumb|300px|Gerakan lempengan tektonik global]]


Gempa bumi tektonik terjadi dimana saja di muka bumi dimana terdapat simpanan energi regangan elastis yang cukup untuk mendorong perambatan rekahan di sepanjang bidang patahan. Sisi-sisi patahan bergerak melewati satu sama lain dengan mulus dan secara aseismik hanya jika tidak terdapat ketidakteraturan atau ketimpangan di sepanjang permukaan patahan yang meningkatkan tahanan gesek. Sebagian besar permukaan patahan memiliki kekasaran seperti itu, yang mengarah ke bentuk perilaku stick-slip.
* '''Gempa bumi dangkal'''
Gempa bumi dangkal adalah gempa bumi yang hiposentrumnya berada kurang dari 60 km dari permukaan bumi. Gempa bumi ini biasanya menimbulkan kerusakan yang besar.


Gempa bumi sering menyebabkan banyak korban jiwa, karena letaknya yang dekat dengan daerah berpenduduk padat atau lautan, dimana gempa bumi sering menimbulkan [[tsunami]] yang dapat menghancurkan berjarak ribuan kilometer jauhnya. Wilayah-wilayah yang paling berisiko mengalami banyak korban jiwa adalah wilayah-wilayah dimana gempa bumi relatif jarang terjadi namun kuat, dan wilayah-wilayah miskin dengan aturan bangunan seismik yang lemah, tidak ditegakkan, atau tidak ada sama sekali.
=== Berdasarkan Gelombang/Getaran Gempa ===
* '''Gelombang Primer'''
Gelombang primer (gelombang lungitudinal) adalah gelombang atau getaran yang merambat di tubuh bumi dengan kecepatan antara 7-14 km/detik. Getaran ini berasal dari [[hiposentrum]].


== Jenis Gempa bumi ==
* '''Gelombang Sekunder'''
===Gempa bumi Tektonik===
Gelombang sekunder (gelombang transversal) adalah gelombang atau getaran yang merambat, seperti gelombang primer dengan kecepatan yang sudah berkurang,yakni 4-7 km/detik. Gelombang sekunder tidak dapat merambat melalui lapisan cair.
[[File:Active Margin.svg|thumb|250px|Konvergensi samudera-benua yang mengakibatkan proses [[subduksi]] dan busur [[vulkanik]] menggambarkan salah satu dampak gempa bumi tektonik dari kedua [[lempeng tektonik]].]]
Gempa bumi tektonik terjadi di mana saja di bumi di tempat yang terdapat energi tekanan elastis yang terakumulasi dengan cukup untuk mendorong perambatan fraktur di sepanjang bidang [[Patahan (geologi)|patahan]]. Permukaan bumi terdiri dari lempeng-lempeng yang berdekatan antara satu dengan yang lain. Lempeng-lempeng ini selalu mengalami pergerakan yang per tahunnya bisa mencapai 10&nbsp;cm.<ref>{{Cite web|last=US Department of Commerce|first=NOAA|title=NWS JetStream Max - World's Major Tectonic Plates|url=https://www.weather.gov/jetstream/plates_max|website=www.weather.gov|language=EN-US|access-date=2023-03-11|archive-date=2023-03-11|archive-url=https://web.archive.org/web/20230311090808/https://www.weather.gov/jetstream/plates_max|dead-url=no}}</ref> Sisi-sisinya hanya dapat bergerak saling melewati satu sama lain secara mulus dan tanpa disertai getaran (aseismik) jika tidak adanya ketidakteraturan atau asperitas di sepanjang permukaan patahan yang meningkatkan hambatan gesekan. Sebagian besar permukaan lempeng memiliki asperitas, yang menyebabkan bentuk perilaku pergesekan yang rapat. Saat patahan terkunci, gerakan relatif yang terus berlangsung di antara lempeng-lempeng akan meningkatkan tekanan dan, oleh karenanya, menyebabkan terakumulasinya energi tegangan di dalam volume di sekitar permukaan patahan. Hal ini terus berlanjut hingga tegangan antara dua atau lebih lempeng yang terjadi mencapai tingkat yang cukup untuk membobol asperitas, yang kemudian menyebabkan terjadinya pergeseran mendadak pada bagian patahan yang terkunci dan melepaskan energi yang terakumulasi.<ref name="Ohnaka">{{cite book|author=Ohnaka, M.|year=2013|url=https://books.google.com/books?id=Bp0gAwAAQBAJ&pg=PA234|title=The Physics of Rock Failure and Earthquakes|publisher=Cambridge University Press|isbn=978-1-107-35533-0|page=148}}</ref>


===Gempa bumi sesar aktif===
== Penyebab terjadinya gempa Bumi ==
{{Lihat|Sesar (Geologi)}}
Kebanyakan gempa Bumi disebabkan dari pelepasan energi yang dihasilkan oleh tekanan yang disebabkan oleh lempengan yang bergerak. Semakin lama tekanan itu kian membesar dan akhirnya mencapai pada keadaan dimana tekanan tersebut tidak dapat ditahan lagi oleh pinggiran lempengan. Pada saat itulah gempa Bumi akan terjadi.
[[File:Epicenter.gif|thumb|240px|Sebuah diagram memperlihatkan [[Episentrum|episenter]] fokus gempa bumi]]
Ada tiga jenis sesar utama, yang dapat menyebabkan gempa bumi antar lempeng yaitu: sesar jenis normal, sesar naik (dorongan), dan sesar strike-slip. Sesar normal dan sesar terbalik merupakan contoh dari dip-slip, dimana perpindahan sepanjang sesar searah dengan arah kemiringan dan pergerakan pada patahan tersebut melibatkan komponen vertikal.


Panjang maksimum patahan yang dipetakan (dapat pecah dalam satu waktu) adalah sekitar 1.000 km (620 mil). Contohnya adalah gempa bumi di Alaska (1957), Chile ([[Gempa bumi Valdivia 1960|1960]]), dan Sumatra ([[Gempa bumi dan tsunami Samudra Hindia 2004|2004]]), semuanya berada di zona subduksi. Gempa bumi terpanjang yang terjadi pada patahan strike-slip, seperti [[Patahan San Andreas]] (1857, [[Gempa bumi San Francisco 1906|1906]]), [[Patahan Anatolia Utara]] di Turki ([[Gempa bumi Erzincan 1939|1939]]), dan [[Patahan Semangko]] di Sumatra ([[Gempa bumi Padang Panjang 1926|1926]]), panjangnya sekitar setengah hingga sepertiga panjang sepanjang batas lempeng subduksi, dan panjang sepanjang patahan normal bahkan lebih pendek.
Gempa Bumi biasanya terjadi di perbatasan lempengan-lempengan tersebut. Gempa Bumi yang paling parah biasanya terjadi di perbatasan lempengan kompresional dan translasional. [[Gempa Bumi fokus dalam]] kemungkinan besar terjadi karena materi [[lapisan litosfer]] yang terjepit kedalam mengalami [[transisi fase]] pada kedalaman lebih dari 600 km.


===Jenis Sesar===
Beberapa gempa Bumi lain juga dapat terjadi karena pergerakan [[magma]] di dalam gunung berapi. Gempa Bumi seperti itu dapat menjadi gejala akan terjadinya letusan gunung berapi. Beberapa gempa Bumi (jarang namun) juga terjadi karena menumpuknya massa air yang sangat besar di balik [[dam]], seperti [[Dam Karibia]] di [[Zambia]], [[Afrika]]. Sebagian lagi (jarang juga) juga dapat terjadi karena injeksi atau akstraksi cairan dari/ke dalam Bumi (contoh. pada beberapa pembangkit listrik tenaga panas Bumi dan di [[Rocky Mountain Arsenal]]. Terakhir, gempa juga dapat terjadi dari peledakan bahan peledak. Hal ini dapat membuat para ilmuwan memonitor tes rahasia [[senjata nuklir]] yang dilakukan pemerintah. Gempa Bumi yang disebabkan oleh manusia seperti ini dinamakan juga [[seismisitas terinduksi]].
[[File:Fault types.svg|thumb|200px|Tiga jenis patahan<br>
A. ''Patahan strike-slip'' (mendatar) terjadi ketika satuan batuan meluncur melewati satu sama lain.<br>
B. ''Patahan normal'' (terbalik) ketika batuan mengalami pemanjangan horizontal.
<br>
C. ''Patahan thrust'' (naik) terjadi ketika batuan mengalami pemendekan horizontal.]]
====Sesar normal====
[[Sesar (geologi)|Sesar normal]] terjadi terutama di daerah yang keraknya memanjang seperti batas [[divergen]]. Gempa bumi yang terkait dengan sesar normal umumnya berkekuatan kurang dari magnitudo 7. Besaran maksimum di sepanjang sesar normal bahkan lebih terbatas karena banyak di antaranya berlokasi di sepanjang pusat penyebaran.


====Sesar naik====
== Sejarah gempa Bumi besar pada abad ke-20 dan 21 ==
[[File:Sesarbaribis.jpg|thumb|240px|[[Sesar Baribis]]. Sesar naik aktif di wilayah [[Jakarta Selatan]]]]
* [[2 Juli]] [[2013]], Gempa Bumi Sumatra 2013 di sepanjang [[Aceh|NAD]] berskala 6.2 [[Skala Richter|SR]]
[[Sesar (geologi)|Sesar naik]] atau terbalik terjadi di daerah yang keraknya memendek seperti pada batas konvergen. Sesar terbalik, terutama yang berada di sepanjang batas konvergen, berhubungan dengan gempa bumi paling kuat (disebut [[Gempa bumi berdorongan besar|gempa bumi megathrust]]) termasuk hampir semua gempa berkekuatan magnitudo 8 atau lebih. Gempa bumi megathrust bertanggung jawab atas sekitar 90% total momen seismik yang terjadi di seluruh dunia.
* [[11 April]] [[2012]], [[Gempa Bumi Sumatera 2012|Gempa bumi]] di sepanjang [[Sumatera|Pulau Sumatera]] berskala 8.6 [[Skala Richter|SR]], berpotensi sampai [[Aceh]], [[Sumatera Utara]], [[Bengkulu]], dan [[Lampung]]. Gempa terasa sampai [[India]].
* [[11 Maret]] [[2011]], [[Gempa Bumi dan tsunami Sendai 2011|Gempa Bumi di Jepang]], 373 km dari kota Tokyo berskala 9,0 Skala Richter yang sebelumnya di revisi dari 8,8 Skala Richter, gempa ini juga menimbulkan gelombang [[tsunami]] di sepanjang pesisir timur [[Jepang]]
* [[26 Oktober]] [[2010]], [[Gempa Bumi Kepulauan Mentawai 2010|Gempa Bumi]] di [[Mentawai]] berskala 7.2 Skala Richter, korban tewas ditemukan hingga 9 November ini mencapai 156 orang. Gempa ini kemudian juga menimbulkan tsunami.
* [[16 Juni]] [[2010]], [[Gempa Bumi Papua 2010|Gempa Bumi]] 7,1 Skala Richter menggguncang [[Pulau Biak|Biak]], [[Papua]].
* [[7 April]] [[2010]], [[Gempa Bumi Sumatera April 2010|Gempa Bumi]] dengan kekuatan 7.2 Skala Richter di Sumatera bagian Utara lainnya berpusat 60km dari [[Sinabang]], [[Aceh]]. Tidak menimbulkan [[tsunami]], menimbulkan kerusakan fisik di beberapa daerah, belum ada informasi korban jiwa.
* [[27 Februari]] [[2010]], Gempa Bumi di [[Chili]] dengan 8.8 Skala Richter, 432 orang tewas (data 30 Maret 2010). Mengakibatkan tsunami menyeberangi Samudera Pasifik yang menjangkau hingga Selandia Baru, Australia, kepulauan Hawaii, negara-negara kepulauan di Pasifik dan Jepang dengan dampak ringan dan menengah.
* [[12 Januari]] [[2010]], Gempa Bumi [[Haiti]] dengan episenter dekat kota Léogâne 7,0 Skala Richter berdampak pada 3 juta penduduk, perkiraan korban meninggal 230.000 orang, luka-luka 300.000 orang dan 1.000.000 kehilangan tempat tinggal.
* [[30 September]] [[2009]], [[Gempa Bumi Sumatera Barat 2009|Gempa Bumi Sumatera Barat]] merupakan gempa tektonik yang berasal dari pergeseran [[patahan Semangko]], gempa ini berkekuatan 7,6 Skala Richter (BMG Indonesia) atau 7,9 Skala Richter (BMG Amerika) mengguncang [[Padang-Pariaman]], Indonesia. Menyebabkan sedikitnya 1.100 orang tewas dan ribuan terperangkap dalam reruntuhan bangunan.
* [[2 September]] [[2009]], [[Gempa Bumi Tasikmalaya 2009|Gempa Tektonik]] 7,3 Skala Richter mengguncang [[Tasikmalaya]], Indonesia. Gempa ini terasa hingga [[Jakarta]] dan [[Bali]], berpotensi [[tsunami]]. Korban jiwa masih belum diketahui jumlah pastinya karena terjadi [[Tanah longsor]] sehingga [[evakuasi|pengevakuasian]] warga terhambat.
[[Berkas:SanFranHouses06.JPG|thumb|350px|Kerusakan akibat gempa Bumi di San Francisco pada tahun 1906]]
[[Berkas:EarthquakeFreewayCa1989.jpg|thumb|350px|Sebagian jalan layang yang runtuh akibat gempa Bumi Loma Prieta pada tahun 1989]]
* 3 Januari 2009 - [[Gempa Bumi Papua 2009|Gempa Bumi]] berkekuatan 7,6 Skala Richter di Papua.
* 12 Mei 2008 - [[Gempa Bumi Shichuan 2008|Gempa Bumi]] berkekuatan 7,8 Skala Richter di Provinsi [[Sichuan]], China. Menyebabkan sedikitnya 80.000 orang tewas dan jutaan warga kehilangan tempat tinggal.
* [[12 September]] [[2007]] - [[Gempa Bumi Bengkulu 2007|Gempa Bengkulu]] dengan kekuatan gempa 7,9 Skala Richter
* [[9 Agustus]] [[2007]] - [[Gempa Bumi Indramayu Jawa Barat 2007|Gempa Bumi]] 7,5 Skala Richter
* [[6 Maret]] [[2007]] - [[Gempa Bumi Sumatera Barat Maret 2007|Gempa Bumi]] tektonik mengguncang provinsi [[Sumatera Barat]], [[Indonesia]]. Laporan terakhir menyatakan 79 orang tewas <ref>[http://www.metrotvnews.com/berita.asp?id=34659 Metro TV News]</ref>.
* [[27 Mei]] [[2006]] - [[Gempa Bumi Yogyakarta Mei 2006|Gempa Bumi]] tektonik kuat yang mengguncang Daerah Istimewa Yogyakarta dan Jawa Tengah pada 27 Mei 2006 kurang lebih pukul 05.55 WIB selama 57 detik. Gempa Bumi tersebut berkekuatan 5,9 pada skala Richter. United States Geological Survey melaporkan 6,2 pada skala Richter; lebih dari 6.000 orang tewas, dan lebih dari 300.000 keluarga kehilangan tempat tinggal.
* [[8 Oktober]] [[2005]] - [[Gempa Bumi Asia Selatan 2005|Gempa Bumi besar]] berkekuatan 7,6 [[skala Richter]] di [[Asia Selatan]], berpusat di [[Kashmir]], [[Pakistan]]; lebih dari 1.500 orang tewas.
* [[26 Desember]] [[2004]] - [[Gempa Bumi Samudra Hindia 2004|Gempa Bumi dahsyat]] berkekuatan 9,0 skala Richter mengguncang [[Aceh]] dan [[Sumatera Utara]] sekaligus menimbulkan gelombang [[tsunami]] di [[samudera Hindia]]. Bencana alam ini telah merenggut lebih dari 220.000 jiwa.
* [[26 Januari]] [[2004]] - [[Gempa Bumi India 2004|Gempa Bumi dahsyat]] berkekuatan 7,7 skala Richter mengguncang [[India]] dan merenggut lebih dari 3.420 jiwa.
* [[26 Desember]] [[2003]] - Gempa Bumi kuat di Bam, barat daya [[Iran]] berukuran 6.5 pada skala Richter dan menyebabkan lebih dari 41.000 orang tewas.
* [[21 Mei]] [[2002]] - Di utara [[Afganistan]], berukuran 5,8 pada skala Richter dan menyebabkan lebih dari 1.000 orang tewas.
* [[26 Januari]] [[2001]] - [[India]], berukuran 7,9 pada skala Richter dan menewaskan 2.500 ada juga yang mengatakan jumlah korban mencapai 13.000 orang.
* [[21 September]] [[1999]] - [[Taiwan]], berukuran 7,6 pada skala Richter, menyebabkan 2.400 korban tewas.
* [[17 Agustus]] [[1999]] - barat [[Turki]], berukuran 7,4 pada skala Richter dan merenggut 17.000 nyawa.
* [[25 Januari]] [[1999]] - Barat [[Colombia]], pada magnitudo 6 dan merenggut 1.171 nyawa.
* [[30 Mei]] [[1998]] - Di utara [[Afganistan]] dan [[Tajikistan]] dengan ukuran 6,9 pada skala Richter menyebabkan sekitar 5.000 orang tewas.
* [[17 Januari]] [[1995]] - Di Kobe, [[Jepang]] dengan ukuran 7,2 skala Richter dan merenggut 6.000 nyawa.
* [[30 September]] [[1993]] - Di Latur, [[India]] dengan ukuran 6,0 pada skala Richter dan menewaskan 1.000 orang.
* [[12 Desember]] [[1992]] - Di [[Flores]], [[Indonesia]] berukuran 7,9 pada skala richter dan menewaskan 2.500 orang.
* [[21 Juni]] [[1990]] - Di barat laut [[Iran]], berukuran 7,3 pada skala Richter, merengut 50.000 nyawa.
* [[7 Desember]] [[1988]] - Barat laut [[Armenia]], berukuran 6,9 pada skala Richter dan menyebabkan 25.000 kematian.
* [[19 September]] [[1985]] - Di [[Mexico]] Tengah dan berukuran 8,1 pada Skala Richter, meragut lebih dari 9.500 nyawa.
* [[16 September]] [[1978]] - Di timur laut [[Iran]], berukuran 7,7 pada skala Richter dan menyebabkan 25.000 kematian.
* [[4 Maret]] [[1977]] - Vrancea, timur [[Rumania]], dengan besar 7,4 SR, menelan sekitar 1.570 korban jiwa, diantaranya seorang aktor Rumania Toma Caragiu, juga menghancurkan sebagian besar dari ibu kota Rumania, [[Bukares]] (Bucureşti).
* [[28 Juli]] [[1976]] - Tangshan, [[Cina]], berukuran 7,8 pada skala Richter dan menyebabkan 240.000 orang terbunuh.
* [[4 Februari]] [[1976]] - Di [[Guatemala]], berukuran 7,5 pada skala Richter dan menyebabkan 22.778 terbunuh.
* [[29 Februari]] [[1960]] - Di barat daya pesisir pantai [[Atlantik]] di [[Maghribi]] pada ukuran 5,7 skala Richter, menyebabkan kira-kira 12.000 kematian dan memusnahkan seluruh kota [[Agadir]].
* [[26 Desember]] [[1939]] - Wilayah Erzincan, [[Turki]] pada ukuran 7,9, dan menyebabkan 33.000 orang tewas.
* [[24 Januari]] [[1939]] - Di Chillan, [[Chili]] dengan ukuran 8,3 pada skala Richter, 28.000 kematian.
* [[31 Mei]] [[1935]] - Di Quetta, [[India]] pada ukuran 7,5 skala Richter dan menewaskan 50.000 orang.
* [[1 September]] [[1923]] - Di [[Yokohama]], [[Jepang]] pada ukuran 8,3 skala Richter dan merenggut sedikitnya 140.000 nyawa.


====Sesar geser====
== Akibat Gempa Bumi ==
[[Sesar (geologi)|Sesar geser]] atau mendatar adalah struktur curam di mana kedua sisi sesar tergelincir secara horizontal melewati satu sama lain; batas transformasi adalah jenis sesar strike-slip tertentu. Sesar mendatar, khususnya transformasi benua, dapat menghasilkan gempa bumi besar hingga berkekuatan 8. Sesar mendatar cenderung berorientasi vertikal, menghasilkan lebar sekitar 10 km (6,2 mil) di dalam kerak bumi yang rapuh. Dengan demikian, gempa dengan magnitudo jauh lebih besar dari 8 tidak mungkin terjadi.
* Bangunan roboh
* Kebakaran
* Jatuhnya korban jiwa
* Permukaan tanah menjadi merekat dan jalan menjadi putus
* Tanah longsor akibat guncangan
* Banjir akibat rusaknya tanggul
* Gempa di dasar laut yang menyebabkan [[tsunami]]


[[File:Gunung Batu.jpg|thumb|240px|[[Sesar Lembang]]. Sesar geser aktif yang paling terkenal di [[Kabupaten Bandung]]]]
== Cara Menghadapi Gempa Bumi ==
Selain itu, terdapat hierarki tingkat tegangan pada ketiga jenis gangguan. Sesar dorong dihasilkan oleh sesar tertinggi, sesar geser oleh sesar menengah, dan sesar normal oleh tingkat tegangan terendah. Hal ini dapat dengan mudah dipahami dengan mempertimbangkan arah tegangan utama terbesar, yaitu arah gaya yang “mendorong” massa batuan pada saat terjadi patahan. Pada sesar normal, massa batuan terdorong ke bawah dalam arah vertikal, sehingga gaya dorong (tegangan utama terbesar) sama dengan berat massa batuan itu sendiri.
Bila berada di dalam rumah:
* Jangan panik dan jangan berlari keluar, berlindunglah dibawah meja atau tempat tidur.
* Bila tidak ada, lindungilah kepala dengan bantal atau benda lainnya.
* Jauhi rak buku, lemari dan kaca jendela.
* Hati-hati terhadap langit-langit yang mungkin runtuh, benda-benda yang tergantung di dinding dan sebagainya.


===Energi yang dilepaskan===
Bila berada di luar ruangan:
[[File:SH-60B helicopter flies over Sendai.jpg|thumb|240px|Kehancuran pada Bandara Sendai, setelah [[Gempa bumi dan tsunami Tōhoku 2011]]]]
* Jauhi bangunan tinggi, dinding, tebing terjal, pusat listrik dan tiang listrik, papan reklame, pohon yang tinggi dan sebagainya.
Untuk setiap peningkatan satuan besarnya, terdapat peningkatan sekitar tiga puluh kali lipat energi yang dilepaskan. Misalnya saja, gempa berkekuatan 6,0 dapat melepaskan energi sekitar 32 kali lebih banyak dibandingkan gempa berkekuatan 5,0 skala Richter, dan gempa berkekuatan 7,0 dapat melepaskan energi 1.000 kali lebih banyak dibandingkan gempa berkekuatan 5,0 magnitudo. Gempa berkekuatan 8,6 magnitudo dapat melepaskan energi yang sama dengan 10.000 [[bom atom]] seukuran yang digunakan pada [[Perang Dunia II]].<ref>{{cite journal |last1=Wyss |first1=M. |year=1979 |title=Estimating expectable maximum magnitude of earthquakes from fault dimensions |url=https://archive.org/details/sim_geology_1979-07_7_7/page/336 |journal=Geology |volume=7 |issue=7| pages=336–340 |bibcode=1979Geo.....7..336W |doi=10.1130/0091-7613(1979)7<336:EMEMOE>2.0.CO;2|issn = 0091-7613}}</ref>
* Usahakan dapat mencapai daerah yang terbuka.
* Jauhi rak-rak dan kaca jendela.


Hal ini terjadi karena energi yang dilepaskan saat gempa bumi, dan besarnya gempa, sebanding dengan luas patahan yang pecah dan penurunan tegangan. Oleh karena itu, semakin panjang dan lebar area patahan, maka besaran yang dihasilkan akan semakin besar. Namun, parameter terpenting yang mengendalikan magnitudo gempa maksimum pada suatu patahan bukanlah panjang maksimum yang tersedia, namun lebar tersedia karena lebar tersedia bervariasi sebesar 20 kali lipat. Sepanjang batas lempeng konvergen, sudut kemiringan bidang patahan sangat besar. dangkal, biasanya sekitar 10 derajat. Oleh karena itu, lebar bidang di bagian atas kerak bumi yang rapuh bisa mencapai 50–100 km (31–62 mil) (seperti di [[Gempa bumi dan tsunami Tōhoku 2011|Jepang, 2011]]), atau ([[Gempa bumi Alaska 1964|Alaska, 1964]]), yang memungkinkan terjadinya gempa bumi terkuat.
Bila berada di dalam ruangan umum:
* Jangan panik dan jangan berlari keluar karena kemungkinan dipenuhi orang.
* Jauhi benda-benda yang mudah tergelincir seperti rak, lemari, kaca jendela dan sebagainya.


===Kedalaman gempa bumi===
Bila sedang mengendarai kendaraan:
[[File:Destroyed Governor office of West Sulawesi.jpg|thumb|240px|Kerusakan pada gedung setelah [[Gempa bumi Sulawesi Barat 2021]], dengan kedalaman dangkal {{convert|10|km|abbr=on}}]]
* Segera hentikan di tempat yang terbuka.
Mayoritas gempa bumi tektonik berasal dari [[Cincin Api Pasifik]] dengan kedalaman tidak melebihi puluhan kilometer. Gempa bumi yang terjadi pada kedalaman kurang dari 70 km (43 mil) diklasifikasikan sebagai gempa bumi "fokus dangkal", sedangkan gempa bumi dengan kedalaman fokus antara 70 dan 300 km (43 dan 186 mil) biasanya disebut "fokus sedang" atau gempa bumi dengan kedalaman menengah. Di zona subduksi, di mana kerak samudera yang lebih tua dan lebih dingin turun ke bawah lempeng tektonik lain, gempa bumi dengan fokus dalam dapat terjadi pada kedalaman yang jauh lebih besar (berkisar antara 300 hingga 700 km (190 hingga 430 mil).
* Jangan berhenti di atas jembatan atau dibawah jembatan layang/jembatan penyeberangan.


Kedalaman gempa bumi:
Bila sedang berada di [[pusat perbelanjaan]], [[bioskop]], dan lantai dasar mall:
* {{cvt|0|–|70|km}} - Gempa bumi "fokus dangkal"
* Jangan menyebabkan kepanikan atau korban dari kepanikan.
* {{cvt|70|–|300|km}} - Gempa bumi "fokus menengah"
* Ikuti semua petunjuk dari pegawai atau satpam.
* {{cvt|300|–|700|km}} - Gempa bumi "fokus dalam"


Daerah subduksi yang aktif secara seismik ini dikenal sebagai zona Wadati–Benioff. Gempa bumi fokus dalam terjadi pada kedalaman di mana litosfer yang tersubduksi seharusnya tidak lagi rapuh karena suhu dan tekanan yang tinggi. Kemungkinan mekanisme terjadinya gempa dengan fokus dalam adalah patahan yang disebabkan oleh olivin yang mengalami transisi fase menjadi struktur spinel.
Bila sedang berada di dalam [[lift]]:
* Jangan menggunakan lift saat terjadi gempabumi atau kebakaran. Lebih baik menggunakan tangga darurat.
* Jika anda merasakan getaran gempabumi saat berada di dalam lift, maka tekanlah semua tombol.
* Ketika lift berhenti, keluarlah, lihat keamanannya dan mengungsilah.
* Jika anda terjebak dalam lift, hubungi manajer gedung dengan menggunakan ''interphone'' jika tersedia.


===Gempa vulkanik===
Bila sedang berada di dalam [[kereta api]]:
{{Lihat|Gempa Vulkanik}}
* Berpeganganlah dengan erat pada tiang sehingga anda tidak akan terjatuh seandainya kereta dihentikan secara mendadak
Gempa bumi sering terjadi di daerah [[letusan vulkanik]] dan disebabkan oleh patahan tektonik maupun pergerakan magma di [[gunung berapi]]. Gempa bumi semacam itu dapat menjadi peringatan dini akan terjadinya letusan gunung berapi, seperti yang terjadi pada [[letusan Gunung St. Helens 1980]]. Retentetan gempa dapat menjadi penanda lokasi aliran magma di seluruh gunung berapi. Kawanan ini dapat direkam oleh seismometer dan tiltmeter (alat yang mengukur kemiringan tanah) dan digunakan sebagai sensor untuk memprediksi letusan yang akan terjadi atau yang akan datang.
* Bersikap tenanglah mengikuti penjelasan dari petugas kereta
* Salah mengerti terhadap informasi petugas kereta atau stasiun akan mengakibatkan kepanikan


===Struktur dinamika===
Bila sedang berada di gunung/pantai:
Gempa tektonik dimulai sebagai area slip awal pada permukaan patahan yang menjadi fokus. Setelah retakan dimulai, retakan tersebut mulai menyebar menjauhi fokus, menyebar di sepanjang permukaan patahan. Perambatan lateral akan terus berlanjut hingga retakan mencapai suatu penghalang, seperti ujung segmen sesar, atau suatu wilayah pada sesar yang tidak mempunyai tekanan yang cukup untuk memungkinkan terjadinya keruntuhan lanjutan. Untuk gempa bumi yang lebih besar, kedalaman keruntuhan akan dibatasi ke bawah oleh zona transisi getas-daktil dan ke atas oleh permukaan tanah. Mekanisme proses ini kurang dipahami karena sulit untuk menciptakan kembali pergerakan cepat seperti itu di laboratorium atau merekam gelombang seismik di dekat zona nukleasi akibat gerakan tanah yang kuat.
* Ada kemungkinan lonsor terjadi dari atas [[gunung]]. Menjauhlah langsung ke tempat aman.
* Di pesisir pantai, bahayanya datang dari tsunami. Jika Anda merasakan getaran dan tanda-tanda tsunami tampak, cepatlah mengungsi ke dataran yang tinggi.


Dalam kebanyakan kasus, kecepatan pecahnya mendekati, namun tidak melebihi, kecepatan gelombang geser (gelombang S) batuan di sekitarnya.
Beri pertolongan:
* Karena petugas kesehatan dari rumah-rumah sakit akan mengalami kesulitan datang ke tempat kejadian maka bersiaplah memberikan pertolongan pertama kepada orang-orang berada di sekitar Anda.


====Gempa bumi Supershear====
Evakuasi:
[[File:Kahramanmaraş after 7.8 magnitude earthquake in Türkiye 5.jpg|thumb|240px|[[Gempa bumi Turki–Suriah 2023]] dengan kecepatan supershear, membunuh sekitar 60.000 jiwa]]
* Tempat-tempat pengungsian biasanya telah diatur oleh pemerintah daerah. Pengungsian perlu dilakukan jika kebakaran meluas akibat gempa bumi. Pada prinsipnya, evakuasi dilakukan dengan berjalan kaki dibawah kawalan petugas polisi atau instansi pemerintah. * * * Bawalah barang-barang secukupnya.
Dalam seismologi, gempa bumi supershear adalah gempa yang terjadi di sepanjang permukaan patahan dengan melebihi kecepatan gelombang geser seismik ([[gelombang S]]). Hal ini menyebabkan efek yang mirip dengan [[Dentuman sonik|ledakan sonik]].<ref>{{Cite web|url=http://news-service.stanford.edu/pr/2005/pr-agu_beroza-120705.html|title=A century after the 1906 earthquake, geophysicists revisit 'The Big One' and come up with a new model|last=Levy D.|work=Press release|publisher=Stanford University|date=December 2, 2005|access-date=June 12, 2008|archive-date=January 29, 2008|archive-url=https://web.archive.org/web/20080129092039/http://news-service.stanford.edu/pr/2005/pr-agu_beroza-120705.html|url-status=dead}}</ref>
Dengarkan informasi:
* Saat gempa bumi terjadi, masyarakat terpukul kejiwaannya. Untuk mencegah kepanikan, penting sekali setiap orang bersikap tenang dan bertindaklah sesuai dengan informasi yang benar. Anda dapat memperoleh informasi yang benar dari pihak berwenang, [[polisi]], atau petugas PMK. Jangan bertindak karena informasi yang tidak jelas.


Beberapa peristiwa gempa bumi supershear:
== Lihat Juga ==
* [[Gempa bumi San Francisco 1906]] di [[California]], Amerika Serikat berkekuatan 7.9 ''{{M|w|link=y}}'' akibat pergeseran [[Sesar San Andreas]]
* [[Persiapan bencana]]
* [[Gempa bumi İzmit 1999]] di Turki berkuatan 7.6 ''{{M|w|link=y}}'' akibat pergeseran [[Sesar Anatolia Utara]]
{{Gempa bumi}}
* [[Gempa bumi Sichuan 2008]] di provinsi [[Sichuan]], Tiongkok berkekuatan 7.9 ''{{M|w|link=y}}'' akibat pergeseran Sesar Longmenshan
* [[Gempa bumi dan tsunami Sulawesi 2018]] di [[Sulawesi Tengah]], [[Kota Palu]] berkekuatan 7.5 ''{{M|w|link=y}}'' akibat pergeseran [[Sesar Palu-Koro]]
* [[Gempa bumi Turki–Suriah 2023]] berkekuatan 7.8 dan 7.5 ''{{M|w|link=y}}'' akibat pergerakan Sesar Anatolia Timur

Diketahui bahwa gempa pecah supershear merambat dengan kecepatan lebih besar dari kecepatan gelombang S. Sejauh ini semua hal ini telah diamati selama peristiwa-peristiwa strike-slip yang besar.

====Gempa bumi lambat====
[[File:Pangandaran - view National Park.JPG|thumb|240px|Pemandangan [[Pantai Pangandaran]] setelah [[Gempa bumi dan tsunami Jawa 2006]]]]
Pecahan gempa bumi yang lambat terjadi dengan kecepatan yang luar biasa rendah. Salah satu bentuk gempa bumi lambat yang sangat berbahaya adalah [[tsunami|gempa tsunami]], ketika intensitas gempa yang dirasakan relatif rendah, dan disebabkan oleh kecepatan rambat yang lambat dari beberapa gempa bumi besar.

Gempa jenis ini tidak memberikan peringatan kepada penduduk di sekitar pantai, karena intensitasnya yang sangat rendah, seperti pada peristiwa [[Gempa bumi dan tsunami Jawa 2006]] dan [[Gempa bumi dan tsunami Jawa Timur 1994]], dimana penduduk hampir tidak merasakan guncangan gempa, dan ratusan orang tewas akibat tsunami setelahnya.<ref name="NRS">{{cite book|last=National Research Council (U.S.). Committee on the Science of Earthquakes|title=Living on an Active Earth: Perspectives on Earthquake Science|chapter-url=http://www.nap.edu/openbook.php?record_id=10493&page=282|access-date=8 July 2010|year=2003|publisher=National Academies Press|location=Washington, D.C.|isbn=978-0-309-06562-7|page=[https://archive.org/details/livingonactiveea0000unse/page/418 418]|chapter=5. Earthquake Physics and Fault-System Science|url=https://archive.org/details/livingonactiveea0000unse/page/418}}</ref>

====Gempa bumi intralempeng====
{{Lihat|Gempa bumi intralempeng}}
Gempa bumi Intralempeng atau disebut gempa bumi Intraslab mengacu pada gempa bumi yang terjadi diluar perbatasan [[lempeng tektonik]]; gempa ini sangat berbeda dengan gempa tektonik biasa dengan kedalaman dangkal, yang terjadi di batas dari lempeng tektonik.

[[File:Damage from the 2009 Padang earthquake. Indonesia 2009. Photo- AusAID (10690967855).jpg|thumb|240px|[[Gempa bumi Sumatra Barat 2009]] salah satu contoh [[gempa bumi intralempeng]], dengan kedalaman {{convert|90|km|abbr=on}}]]
Banyak kota yang menghadapi risiko seismik berupa gempa bumi intralempeng besar yang jarang terjadi. Penyebab gempa bumi ini seringkali tidak diketahui secara pasti. Dalam banyak kasus, kesalahan penyebab terkubur dalam-dalam dan terkadang bahkan tidak dapat ditemukan. Beberapa penelitian menunjukkan bahwa gempa dapat disebabkan oleh pergerakan cairan ke atas kerak bumi di sepanjang zona patahan kuno. Dalam keadaan seperti ini, sulit untuk memperkirakan bahaya seismik suatu kota, terutama jika hanya terjadi satu gempa bumi dalam sejarah. Beberapa kemajuan sedang dicapai dalam memahami mekanisme patahan yang menyebabkan gempa bumi ini.<ref>{{Cite journal|last1=Iwata |first1=Tomotaka |last2=Asano |first2=Kimiyuki |year=2011 |title=Characterization of the Heterogeneous Source Model of Intraslab Earthquakes Toward Strong Ground Motion Prediction |journal=Pure and Applied Geophysics |volume=168 |issue=1–2 |pages=117–124 |doi=10.1007/s00024-010-0128-7 |bibcode=2011PApGe.168..117I |s2cid=140602323 }}</ref><ref>{{Cite journal|last1=Senoa |first1=Tetsuzo |last2=Yoshida |first2=Masaki |year=2004 |title=Where and why do large shallow intraslab earthquakes occur? |journal=Physics of the Earth and Planetary Interiors |volume=141 |issue=3 |pages=183–206 |doi=10.1016/j.pepi.2003.11.002 |bibcode=2004PEPI..141..183S }}</ref>

====Gempa awal====
{{Lihat|Gempa awal}}
[[File:2018 Sulawesi earthquake map.svg|thumb|240px|Peta menampilkan gempa awal berkekuatan M6.1 sebelum '''gempa utama''' datang berkekuatan M7.5 pada [[Gempa bumi dan tsunami Sulawesi 2018]]]]

[[Gempa awal]] adalah guncangan gempa bumi pendahuluan yang terjadi sebelum gempa jauh yang lebih besar datang – dan disebut '''gempa utama''' – dan berkaitan dengannya dalam ruang dan waktu. Penetapan suatu gempa bumi sebagai gempa pendahuluan, gempa utama, atau gempa susulan hanya dapat dilakukan setelah rangkaian peristiwa yang lengkap telah terjadi.<ref name="Gates">{{cite book|last1=Gates|first1=A.|last2=Ritchie|first2=D.|title=Encyclopedia of Earthquakes and Volcanoes|url=https://books.google.com/books?id=b1sXfJCiCHQC&dq=foreshock+earthquake&pg=PA89|year=2006|publisher=Infobase Publishing|isbn=978-0-8160-6302-4|page=89|access-date=29 November 2010}}</ref>

Aktivitas gempa awal telah terdeteksi pada sekitar 40% dari seluruh gempa bumi sedang hingga besar, dan sekitar 70% pada kejadian M>7.0. Guncangan ini terjadi dalam hitungan menit hingga hari atau bahkan lebih lama sebelum guncangan utama; misalnya, [[:en:2002 Sumatra earthquake|Gempa bumi Sumatra 2002]] dianggap sebagai gempa pendahuluan dari [[Gempa bumi Samudera Hindia 2004]] dengan jeda waktu lebih dari dua tahun sebelum peristiwa tersebut terjadi.<ref name="NRS">{{cite book|last=National Research Council (U.S.). Committee on the Science of Earthquakes|title=Living on an Active Earth: Perspectives on Earthquake Science|chapter-url=https://archive.org/details/livingonactiveea0000unse/page/418|access-date=29 November 2010|year=2003|publisher=National Academies Press|location=Washington D.C.|isbn=978-0-309-06562-7|page=[https://archive.org/details/livingonactiveea0000unse/page/418 418]|chapter=5. Earthquake Physics and Fault-System Science}}</ref>

Namun beberapa gempa besar (M>8.0) tidak menunjukkan aktivitas gempa pendahuluan sama sekali, seperti pada peristiwa [[Gempa bumi Biak 1996|Gempa bumi Biak 1996 - M8.1]].

Peningkatan aktivitas gempa pendahuluan sulit diukur untuk masing-masing gempa bumi, namun akan terlihat ketika menggabungkan hasil dari berbagai peristiwa yang berbeda. Dari observasi gabungan tersebut, peningkatan sebelum guncangan utama diamati bertipe hukum kekuatan terbalik. Hal ini mungkin menunjukkan bahwa gempa pendahuluan menyebabkan perubahan tegangan yang mengakibatkan guncangan utama atau bahwa peningkatan tersebut terkait dengan peningkatan tegangan secara umum di wilayah tersebut.<ref name="Maeda">{{cite book|last=Maeda|first=K.|editor=Wyss M., Shimazaki K. & Ito A.|title=Seismicity patterns, their statistical significance and physical meaning|chapter-url=https://books.google.com/books?id=QIy6le4sCMAC&dq=foreshock&pg=PA381|access-date=29 November 2010|series=Reprint from Pageoph Topical Volumes|year=1999|publisher=Birkhäuser|isbn=978-3-7643-6209-6|pages=381–394|chapter=Time distribution of immediate foreshocks obtained by a stacking method}}</ref>

====Gempa susulan====
{{Lihat|Gempa susulan}}
[[Gempa susulan]] adalah gempa yang terjadi setelah gempa sebelumnya, yaitu gempa utama. Perubahan tekanan antar batuan yang cepat, dan tekanan dari gempa bumi asli merupakan penyebab utama terjadinya gempa susulan ini, bersamaan dengan pecahnya lapisan kerak bumi di sekitar bidang patahan saat menyesuaikan dengan efek gempa utama.<ref name=Britannica>{{Cite web|title=Aftershock {{!}} geology|url=https://www.britannica.com/science/aftershock-geology|access-date=2021-10-13|website=Encyclopedia Britannica|language=en|archive-date=2015-08-23|archive-url=https://web.archive.org/web/20150823124854/https://www.britannica.com/science/aftershock-geology|url-status=live}}</ref>

[[File:Map of 2018 Lombok earthquake.svg|thumb|240px|Peta gempa utama dan susulan pada [[Gempa bumi Lombok Agustus 2018]]]]
Gempa susulan terjadi di wilayah yang sama dengan gempa utama namun selalu berkekuatan lebih kecil, namun gempa tersebut masih cukup kuat untuk menyebabkan kerusakan yang lebih besar pada bangunan yang sebelumnya telah rusak akibat gempa utama. Jika gempa susulan lebih besar dari gempa utama, maka gempa susulan tersebut ditetapkan kembali sebagai gempa utama dan guncangan utama semula ditetapkan kembali sebagai gempa pendahuluan. Gempa susulan terbentuk saat kerak di sekitar bidang [[Sesar (geologi)|patahan]] yang tergeser menyesuaikan diri dengan efek gempa utama.

====Gempa bumi swarm====
Gempa bumi swarm adalah kawanan gempa yang terjadi di suatu wilayah tertentu dalam waktu singkat dengan skala yang relatif sama. Gempa bumi ini berbeda dengan gempa bumi yang diikuti oleh serangkaian [[gempa susulan]] karena tidak ada guncangan utama, sehingga tidak ada gempa yang berkekuatan lebih besar dari gempa lainnya.

Contoh gempa bumi swarm terjadi pada [[Kabupaten Sumedang]] dengan kekuatan 4,5, 4,8 dan 4,2 pada Desember 2023 dan Januari 2024.<ref>{{cite web|title=BRIN Ungkap Sesar Aktif Berkekuatan Besar Kepung Sumedang|url=https://www.cnnindonesia.com/teknologi/20240112163809-199-1048788/brin-ungkap-sesar-aktif-berkekuatan-besar-kepung-sumedang|website=[[CNN Indonesia]]|access-date=21 Juni 2024}}</ref>

====Seismik Gap====
[[File:Map of July Jakarta Earthquake.png|thumb|240px|Peta [[Zona subduksi Selat Sunda|Sunda Megathurst]] di selatan Jawa. Zona ini belum pernah mengalami gempa bumi besar >M8.0 dalam 200 tahun terakhir]]

'''Seismik Gap''' atau '''Celah seismik''' adalah segmen [[Patahan (geologi)|patahan aktif]] yang tidak menghasilkan gempa bumi kuat dalam jangka waktu yang sangat lama, dibandingkan dengan segmen lain di sepanjang zona patahan yang sama.<ref>{{cite journal|doi=10.1029/91JB02210 | bibcode=1991JGR....9621419K | volume=96 | title=Seismic Gap Hypothesis: Ten years after | year=1991 | journal=Journal of Geophysical Research: Solid Earth | pages=21419–21431 | last1 = Kagan | first1 = Yan Y. | last2 = Jackson | first2 = David D.| issue=B13 }}</ref>

Terdapat hipotesis atau teori yang menyatakan bahwa dalam jangka waktu yang lama, perpindahan pada setiap segmen harus sama dengan yang dialami seluruh bagian sesar lainnya. Oleh karena itu, setiap celah yang besar dan berkepanjangan dianggap sebagai segmen patahan yang paling mungkin mengalami gempa bumi di masa depan.<ref>{{cite journal | url=https://doi.org/10.1007%2FBF00876211 | doi=10.1007/BF00876211 | title=Seismic gaps and plate tectonics: Seismic potential for major boundaries | year=1979 | last1=McCann | first1=W. R. | last2=Nishenko | first2=S. P. | last3=Sykes | first3=L. R. | last4=Krause | first4=J. | journal=Pure and Applied Geophysics Pageoph | volume=117 | issue=6 | pages=1082–1147 | bibcode=1979PApGe.117.1082M | s2cid=129377355 }}</ref>

Di [[Selat Sunda]] merupakan zona "Seismic Gap" yaitu zona kekosongan gempa besar selama ratusan tahun dan berada di antara 2 gempa besar yang merusak dan memicu tsunami yaitu [[Gempa bumi dan tsunami Jawa 2006|Gempa bumi Jawa M7,7 (2006)]] dan [[Gempa bumi Sumatra September 2007|Gempa bumi Bengkulu M8,4 (2007)]].<ref>{{cite web|url=https://www.m.antaranews.com/amp/berita/2645049/megathrust-selat-sunda-zona-seismik-gap-yang-patut-diwaspadai|title=Megathrust Selat Sunda zona seismik gap yang patut diwaspadai|website=[[Antara.news]]|access-date=23 Juni 2024}}</ref>

====Intensitas dan kekuatan====
{{Lihat|Skala magnitudo momen|Skala intensitas Mercalli yang dimodifikasi}}

Skala instrumental yang digunakan untuk menggambarkan besarnya gempa dimulai dengan [[Skala Richter]] pada tahun 1930an. Ini adalah pengukuran amplitudo suatu peristiwa yang relatif sederhana, dan penggunaannya menjadi minimal di abad ke-21. Skala gempa yang digunakan saat ini untuk otoritas [[Seismologi]] adalah [[Skala magnitudo momen]] untuk menggantikan [[Skala Richter]] yang dianggap tidak akurat saat ini.

[[File:M 5.6 - 18 km WSW of Ciranjang-hilir, Indonesia (West Java) ShakeMap.jpg|thumb|220px|Peta menampilkan guncangan intensitas [[Gempa bumi Cianjur 2022]] dengan skala MMI IX (''Hebat'') pada [[Skala intensitas Mercalli yang dimodifikasi|skala intensitas Mercalli]]]]

[[Gelombang seismik]] merambat melalui bagian dalam bumi dan dapat direkam oleh [[seismometer]] pada jarak yang sangat jauh. Besaran gelombang permukaan dikembangkan pada tahun 1950an sebagai alat untuk mengukur gempa bumi jarak jauh dan meningkatkan akurasi gempa bumi yang lebih besar. [[Skala magnitudo momen]] tidak hanya mengukur amplitudo guncangan tetapi juga memperhitungkan momen seismik (total luas keruntuhan, rata-rata slip sesar, dan kekakuan batuan). [[Skala intensitas Mercalli yang dimodifikasi]] didasarkan pada efek yang diamati dan terkait dengan intensitas guncangan.<ref>{{Cite book |last1=Earle |first1=Steven |date=September 2015 |title=Physical Geology |edition=2nd |chapter=11.3 Measuring Earthquakes |chapter-url=https://opentextbc.ca/geology/chapter/11-3-measuring-earthquakes/ |language=en |access-date=2022-10-22 |archive-date=2022-10-21 |archive-url=https://web.archive.org/web/20221021040843/https://opentextbc.ca/geology/chapter/11-3-measuring-earthquakes/ |url-status=live }}</ref>

== Frekuensi gempa bumi ==
[[File:Comerio, Luca (1878-1940) - Vittime del terremoto di Messina (dicembre 1908).jpg|thumb|200px|[[Gempa bumi Messina 1908|Gempa bumi dan tsunami di Messina, Italia]] memakan hingga 120,000 korban jiwa, salah satu bencana terburuk dalam sejarah [[Eropa]].]]

Diperkirakan sekitar 500.000 gempa bumi terjadi setiap tahunnya, dan dapat dideteksi dengan instrumentasi saat ini. Sekitar 100.000 gempa bumi di antaranya dapat dirasakan. Gempa bumi kecil hampir terus-menerus terjadi di seluruh wilayah didunia seperti di [[California]] dan [[Alaska]], serta di [[El Salvador]], [[Meksiko]], [[Guatemala]], [[Chili]], [[Peru]], [[Indonesia]], [[Filipina]], [[Iran]], [[Pakistan]], [[Azores|Kepualauan Azores]] di [[Portugal]], [[Turki]], [[Selandia Baru]], [[Yunani]], Italia, [[India]], [[Nepal]], dan [[Jepang]].<ref>{{cite web |url=https://earthquake.usgs.gov/ |title=Earthquake Hazards Program |publisher=United States Geological Survey |access-date=2006-08-14 |archive-date=2011-05-13 |archive-url=https://web.archive.org/web/20110513032733/https://sslearthquake.usgs.gov/ens/ |dead-url=no }}</ref><ref>[http://www.australiangeographic.com.au/journal/the-10-biggest-earthquakes-in-recorded-history.htm/ The 10 biggest earthquakes in history] {{Webarchive|url=https://web.archive.org/web/20130930084024/http://www.australiangeographic.com.au/journal/the-10-biggest-earthquakes-in-recorded-history.htm/ |date=2013-09-30 }}, Australian Geographic, March 14, 2011.</ref>

Gempa bumi berkekuatan besar jarang terjadi dan hubungannya bersifat eksponensial; misalnya, gempa bumi yang lebih besar dari magnitudo 4 terjadi sepuluh kali lebih banyak dibandingkan gempa yang lebih besar dari magnitudo 5. Di [[Britania Raya]] (wilayah seismik terendah di [[Eropa]]), telah dihitung bahwa rata-rata kejadiannya adalah: gempa bumi berkekuatan 3,7–4,6 setiap tahun, gempa bumi berkekuatan 4,7–5,5 setiap 10 tahun, dan gempa bumi berkekuatan 5,6 atau lebih besar setiap 100 tahun.<ref>{{cite web |url=http://www.quakes.bgs.ac.uk/hazard/Hazard_UK.htm |title=Seismicity and earthquake hazard in the UK |publisher=Quakes.bgs.ac.uk |access-date=2010-08-23 |archive-date=2010-11-06 |archive-url=https://web.archive.org/web/20101106121058/http://quakes.bgs.ac.uk/hazard/Hazard_UK.htm |url-status=live }}</ref>

Jumlah stasiun seismik telah meningkat dari sekitar 350 pada tahun 1931 menjadi ribuan saat ini. Akibatnya, lebih banyak gempa bumi yang dilaporkan dibandingkan di masa lalu, namun hal ini disebabkan oleh kemajuan pesat dalam instrumentasi, dibandingkan peningkatan jumlah gempa bumi. [[Survei Geologi Amerika Serikat]] (USGS) memperkirakan bahwa, sejak tahun 1900, telah terjadi rata-rata 18 gempa bumi besar (berkekuatan 7,0–7,9) dan satu gempa besar (berkekuatan 8,0 atau lebih besar) per tahun, dan rata-rata ini relatif stabil.

[[File:Pacific Ring of Fire.svg|thumb|240px|[[Cincin Api Pasifik]]. Zona seismik dan letusan gunung berapi terbesar didunia]]
[[Berkas:Alpiner Gebirgsgürtel.png|thumb|240px|[[Sabuk alpide|Zona Sabuk alpida]]. Zona seismik paling aktif kedua didunia]]

Sebagian besar gempa bumi di dunia 90%, terjadi di zona sepanjang 40.000 kilometer (25.000 mil), yang dikenal sebagai [[Cincin Api Pasifik]]. Sekitar 90% dari gempa bumi yang terjadi dan 81% dari gempa bumi terbesar terjadi di sepanjang Cincin Api ini.

Gempa besar juga cenderung terjadi di sepanjang batas lempeng lainnya, seperti di sepanjang [[Pegunungan Himalaya]] yang dikenal sebagai [[Sabuk alpide|Zona sabuk alpida]], zona seisimik paling aktif kedua setelah Cincin api di Pasifik.<ref>
{{cite web
|title = Historic Earthquakes and Earthquake Statistics: Where do earthquakes occur?
|url = https://earthquake.usgs.gov/learning/faq.php?categoryID=11&faqID=95
|publisher = United States Geological Survey
|access-date = 2006-08-14
|url-status = dead
|archive-url = https://web.archive.org/web/20060925142008/http://earthquake.usgs.gov/learning/faq.php?categoryID=11&faqID=95
|archive-date = 2006-09-25
}}</ref> Zona seismik [[Sabuk alpida]] mempunyai reputasi sebagai pembunuh. Meskipun hanya sekitar 17% gempa bumi besar di dunia terjadi di sabuk seismik Alpida, sebagian besar korban jiwa akibat gempa bumi sepanjang sejarah terjadi di zona ini. Hal ini terutama disebabkan oleh konstruksi yang lemah dan banyaknya jumlah penduduk di wilayah tersebut. Beberapa gempa bumi mematikan di daerah ini termasuk [[Gempa bumi Asia Selatan 2005]] yang membunuh sekitar 87.000 jiwa, lalu [[Gempa bumi Bam 2003]] di Tenggara [[Iran]] menewaskan sekitar 34.000 orang, dan gempa bumi baru baru ini yaitu [[Gempa bumi Turki–Suriah 2023]] membunuh sekitar 50.000 jiwa.<ref>{{cite web|title=All about the Alpide Belt that makes Turkey a hotbed for devastating earthquakes|trans-title=Semua tentang Sabuk Alpida yang menjadikan Turki sarang gempa bumi dahsyat|url=https://theprint.in/world/all-about-the-alpide-belt-that-makes-turkey-a-hotbed-for-devastating-earthquakes/1357347/|language=en|website=theprint.in|access-date=7 Mei 2024}}</ref>

[[Berkas:Skyscrapers of Shinjuku 2009 January.jpg|thumb|240px|[[Tokyo]] menjadi kota paling rawan gempa di dunia. Para ahli mengatakan, ada kemungkinan 70 persen gempa besar berkekuatan 7.0 melanda wilayah selatan [[Tokyo]] dalam 30 tahun ke depan.]]

Kota-kota besar seperti [[Mexico City]], [[Tokyo]], [[Jakarta]], [[Manila]], [[Los Angeles]], [[San Francisco]], [[Roma]], [[Istanbul]], [[Bucharest]], [[Delhi]] dan [[Teheran]] memiliki resiko gempa bumi yang sangat tinggi, dengan kerusakan dan jumlah korban yang tak terbatas. Beberapa seismolog memperingatkan bahwa satu gempa bumi saja dapat merenggut nyawa sekitar tiga juta orang, meskipun peristiwa semacam itu belum pernah terjadi dalam catatan sejarah.<ref>{{cite web|title=The 12 Most Earthquake Vulnerable Cities In The World|trans-title=12 Kota Paling Rentan Gempa bumi Di Dunia|url=https://www.worldatlas.com/natural-disasters/the-12-most-earthquake-vulnerable-cities-in-the-world.html|website=World Atlas|access-date=24 Januari 2024|language=en}}</ref><ref>"[http://cires.colorado.edu/~bilham/UrbanEarthquakesGlobal.html Global urban seismic risk] {{Webarchive|url=https://web.archive.org/web/20110920015358/http://cires.colorado.edu/~bilham/UrbanEarthquakesGlobal.html |date=2011-09-20 }}." Cooperative Institute for Research in Environmental Science.</ref>

== Dampak gempa bumi ==
=== Guncangan dan pergerakan tanah ===
{{Main|Percepatan tanah puncak}}
[[File:MexCity85quake.jpg|thumb|240px|Struktur bangunan delapan lantai yang fondasinya hancur, setelah diguncang [[Gempa bumi Kota Meksiko 1985]]]]
[[File:Tremor(English).gif|thumb|240px|Animasi perbandingan guncangan gempa antara [[Gempa bumi Kota Meksiko 1985]] dan [[Gempa bumi Puebla 2017]]]]
Guncangan tanah adalah dampak utama yang ditimbulkan oleh gempa bumi. Tingkat keparahan dampak lokal bergantung pada kombinasi kompleks besaran gempa, jarak dari pusat gempa, serta kondisi geologi dan geomorfologi setempat, yang dapat memperkuat atau mengurangi perambatan gelombang. Guncangan tanah diukur dengan [[percepatan tanah puncak]].

Efek ini disebut amplifikasi. Hal ini terutama disebabkan oleh perpindahan gerakan seismik dari tanah dalam yang keras ke tanah dangkal yang lunak dan efek fokus energi seismik yang disebabkan oleh susunan geometris khas dari endapan tersebut.

Guncangan tanah adalah risiko berbahaya bagi struktur teknik bangunan besar seperti [[bendungan]], [[jembatan]], dan [[pembangkit listrik tenaga nuklir]] yang dapat merusak struktur tersebut.

=== Pencairan tanah ===
{{Artikel|Pencairan tanah}}
[[File:Petobo portrait after Sulawesi earthquake 2.jpg|thumb|240px|Dampak Pencairan tanah di Balaroa, [[Palu (kota)|Palu]], setelah [[Gempa bumi dan tsunami Sulawesi 2018]]]]

[[Pencairan tanah]] atau Likeufaksi terjadi ketika, karena goncangan, material butiran jenuh air (seperti pasir) untuk sementara kehilangan kekuatannya dan berubah dari padat menjadi cair. Likuifaksi tanah dapat menyebabkan struktur kaku, seperti bangunan dan jembatan, miring atau tenggelam ke dalam endapan cair. Misalnya, pada [[Gempa bumi Alaska 1964|Gempa bumi Alaska tahun 1964]], pencairan tanah menyebabkan banyak bangunan tenggelam ke dalam tanah, dan akhirnya runtuh dengan sendirinya.<ref>{{cite web|url=https://earthquake.usgs.gov/regional/states/events/1964_03_28.php |title=Historic Earthquakes – 1964 Anchorage Earthquake |publisher=United States Geological Survey |access-date=2008-09-15 |url-status=dead |archive-url=https://web.archive.org/web/20110623111831/http://earthquake.usgs.gov/regional/states/events/1964_03_28.php |archive-date=2011-06-23 }}</ref>

=== Tanah Longsor ===
{{Artikel|Tanah Longsor}}
[[File:ElSalvadorslide.jpg|thumb|220px|Tanah longsor akibat [[Gempa bumi El Salvador 2001]]]]
Gempa bumi seringkali memicu terjadinya [[tanah longsor]], sehingga menyebabkan kerusakan parah dan bahkan bencana pada rumah-rumah. Jika rumah Anda berada di jalur longsor akibat gempa, maka bangunan disek8 berisiko mengalami kerusakan akibat puing-puing tanah longsor, serta tergelincir ke bawah bukit.

Setiap jenis tanah longsor yang disebabkan oleh gempa bumi terjadi pada lingkungan geologi tertentu. Mulai dari lereng yang menjorok dari batuan yang terindurasi dengan baik hingga lereng dengan kemiringan kurang dari 1° yang didasari oleh sedimen lunak dan tidak terkonsolidasi. Material yang paling rentan terhadap tanah longsor akibat gempa bumi meliputi batuan dengan sementasi lemah, batuan dengan indurasi lebih tinggi dengan diskontinuitas yang menonjol atau pervasif, pasir sisa dan koluvial, tanah vulkanik yang mengandung lempung sensitif, tanah loess, tanah tersementasi, alluvium granular, endapan delta granular, dan man-granular. dibuat terisi.

=== Kebakaran ===
[[File:Sfearthquake3b.jpg|thumb|240px|Kebakaran saat [[Gempa bumi San Francisco 1906]].]]
Gempa bumi juga dapat menyebabkan [[kebakaran]] dengan merusak saluran listrik atau saluran pipa gas. Misalnya, pada [[Gempa bumi San Francisco 1906]] lebih banyak korban jiwa yang disebabkan oleh api daripada gempa itu sendiri.<ref>{{cite web|url=https://earthquake.usgs.gov/regional/nca/1906/18april/index.php|title=The Great 1906 San Francisco earthquake of 1906|publisher=United States Geological Survey|access-date=2008-09-15|archive-date=2017-02-11|archive-url=https://web.archive.org/web/20170211170826/https://earthquake.usgs.gov/regional/nca/1906/18april/index.php|url-status=dead}}</ref>

=== Tsunami ===
{{Artikel|Tsunami}}
[[File:2004-tsunami.jpg|thumb|240px|Tsunami saat [[Gempa bumi dan tsunami Samudra Hindia 2004|Gempa bumi di Samudra Hindia]].]]
Tsunami adalah gelombang laut dengan panjang gelombang dan periode panjang yang dihasilkan oleh pergerakan air dalam jumlah besar secara tiba-tiba atau tiba-tiba—termasuk saat terjadi gempa bumi di bawah laut. Di lautan terbuka, jarak antara puncak gelombang dapat melebihi 100 kilometer (62 mil), dan periode gelombang dapat bervariasi dari lima menit hingga satu jam. Tsunami semacam itu bergerak dengan kecepatan 600–800 kilometer per jam (373–497 mil per jam), bergantung pada kedalaman air. Gelombang besar yang dihasilkan oleh gempa bumi atau tanah longsor bawah laut dapat menyerbu daerah pesisir terdekat dalam hitungan menit. Tsunami juga dapat menempuh jarak ribuan kilometer melintasi lautan terbuka dan mendatangkan kehancuran di pantai seberang beberapa jam setelah gempa bumi yang menimbulkannya.

Biasanya, gempa subduksi di bawah magnitudo 7,5 tidak menyebabkan tsunami, meskipun beberapa kejadiannya telah tercatat. Sebagian besar tsunami yang merusak disebabkan oleh gempa bumi berkekuatan 7,5 atau lebih.

=== Banjir ===
{{Artikel|Banjir}}
Banjir mungkin efek sekunder dari gempa bumi jika [[bendungan]] rusak. Gempa bumi dapat menyebabkan tanah longsor membendung sungai, runtuh dan menyebabkan banjir.

===Dampak pada Manusia===
[[File:USMC-06155.jpg|thumb|240px|Korban terluka di [[Sewon, Bantul]] akibat [[Gempa bumi Yogyakarta 2006]]]]

Dampak fisik akibat gempa bumi termasuk: Cedera dan kehilangan nyawa.<ref>{{Cite web |title=The wicked problem of earthquake hazard in developing countries |url=https://www.preventionweb.net/news/wicked-problem-earthquake-hazard-developing-countries |access-date=2022-11-03 |website=www.preventionweb.net |date=7 March 2018 |language=en |archive-date=2022-11-03 |archive-url=https://web.archive.org/web/20221103025507/https://www.preventionweb.net/news/wicked-problem-earthquake-hazard-developing-countries |url-status=live }}</ref>

Selain itu, masyarakat yang terkena dampak gempa cenderung terpengaruh secara psikologis, seperti gangguan mental dan perilaku yang secara langsung menimbulkan rasa takut atau menyebabkan [[gangguan stres pascatrauma]] (PTSD). Dilaporkan bahwa antara 10 dan 40% para penyintas bencana gempa bumi mengalami depresi, dan sulit tidur karena gangguan kecemasan.

Para penyintas gempa mengalami dampak kecemasan, adalah sesuatu yang wajar saat mengalami gempa pertama, apalagi gempa besar.

Diketahui bahwa gejala PTSD, depresi, dan kecemasan merupakan gangguan mental yang banyak terjadi pada remaja Indonesia pasca gempa.

Orang-orang dapat mengalami pusing, kecemasan, dan bahkan "[[gempa susulan]] hantu”. Gempa bumi selalu menakutkan, namun bagi sebagian orang, gempa susulan dapat terjadi lebih dari sekedar gempa yang sebenarnya: Orang dapat mengalami kecemasan, masalah tidur, dan masalah kesehatan lainnya dalam hitungan jam atau hari setelah gempa.<ref>{{cite web|title=Survivors of Deadly Earthquakes Must Deal with Lasting Trauma|trans-title=Korban Gempa Mematikan Harus Menghadapi Trauma Abadi|url=https://www.scientificamerican.com/article/survivors-of-deadly-earthquakes-must-deal-with-lasting-trauma/|language=en|website=Scientificamericab.com|access-date=5 Mei 2024}}</ref>

== Prediksi gempa bumi ==
[[File:Kinemetrics seismograph.jpg|thumb|250px|Sebuah [[Seismometer]] alat pengukur skala gempa bumi]]
{{Lihat|Gempa bumi Haicheng 1975}}
Prediksi gempa bumi adalah cabang ilmu [[seismologi]] yang berkaitan dengan spesifikasi waktu, lokasi, dan berapa besarnya gempa bumi di masa depan. Banyak metode yang telah dikembangkan untuk memprediksi kapan gempa bumi akan terjadi, dalam waktu, dan tempat yang ditentukan. Meskipun banyak upaya yang dilakukan, hingga saat ini gempa bumi belum dapat diprediksi pada hari atau bulan tertentu.

Pada tahun 1970-an, para ilmuwan optimis bahwa metode untuk memprediksi gempa bumi akan segera ditemukan, tetapi pada tahun 1990-an kegagalan terus berlanjut, dan membuat banyak pihak mempertanyakan apakah hal semacam itu bisa dilakukan. Sebagian besar ilmuwan pesimis dan berpendapat bahwa, memprediksi gempa bumi pada dasarnya adalah hal mustahil untuk dilakukan.

[[Gempa bumi Haicheng 1975]] diklaim satu satunya yang berhasil diprediksi oleh seismologi, sehingga angka korban jiwa berhasil ditekan, sebagian besar kota telah dievakuasi sebelum gempa, dan hanya sedikit korban yang meninggal akibat runtuhnya bangunan.<ref>{{Harvtxt|Whitham|Berry|Heidebrecht|Kanasewich|1976|p=266}} provide a brief report. {{Harvtxt|Raleigh|Bennett|Craig|Hanks|1977}} has a fuller account. {{Harvtxt|Wang|Chen|Sun|Wang|2006|p=779}}, after careful examination of the records, set the death toll at 2,041.</ref>

===Metode prediksi gempa===
====Metode prediksi hewan====
Beberapa peneliti percaya, bahwa perilaku hewan dapat memprediksi gempa bumi.<ref name="usgs_animals">[https://www.usgs.gov/natural-hazards/earthquake-hazards/science/animals-earthquake-prediction?qt-science_center_objects=0 Animals and Earthquake Prediction]</ref> Gempa bumi terjadi, akibat dari ([[Gelombang-P]]) merambat dua kali lebih cepat dibandingkan gelombang geser yang lebih merusak ([[Gelombang-S]]). Gelombang tersebut tidak dapat dirasakan oleh manusia, namun hewan menyadari getaran kecil yang muncul beberapa puluh detik sebelum guncangan besar datang, hewan tersebut menjadi waspada atau menunjukkan perilaku tidak biasa lainnya.<ref name="2018_review">[https://pubs.geoscienceworld.org/ssa/bssa/article-abstract/108/3A/1031/530275/Review-Can-Animals-Predict-Earthquakes-Review-Can?redirectedFrom=fulltext Review: Can Animals Predict Earthquakes? ]</ref>

Sebuah studi ilmiah pada tahun 2018 yang mencakup lebih dari 130 spesies hewan, tidak menemukan cukup bukti untuk menunjukkan bahwa hewan dapat memberikan peringatan gempa bumi beberapa jam, hari, atau minggu sebelumnya. Statistik lain menunjukkan bahwa beberapa laporan perilaku hewan yang tidak biasa disebabkan oleh gempa bumi yang lebih kecil ([[gempa awal]]) yang terkadang didahului oleh gempa besar. Gempa kecil tersebut tidak dapat dirasakan oleh manusia, tapi dapat dirasakan oleh hewan. Namun, beberapa perilaku hewan mungkin bisa secara keliru dikaitkan dengan gempa bumi yang akan terjadi dalam waktu dekat.

Banyak peneliti yang menyelidiki perilaku hewan terhadap gempa bumi berada di [[Tiongkok]] dan [[Jepang]].<ref>{{Harvnb|Freund|Stolc|2013}}.</ref> Sebagian besar observasi ilmiah berasal dari [[gempa bumi Canterbury 2010]] di Selandia Baru, [[:en:1984 Nagano earthquake|gempa bumi Nagano 1984]] di Jepang, dan [[gempa bumi L'Aquila 2009]] di Italia.

Hewan yang dikenal bersifat magnetoreseptif mungkin dapat mendeteksi [[gelombang elektromagnetik]] dalam rentang frekuensi sangat rendah yang mencapai permukaan bumi sebelum gempa bumi, sehingga menyebabkan perilaku aneh. [[Gelombang elektromagnetik]] ini juga dapat menyebabkan [[ionisasi]] udara, [[oksidasi]] air, dan kemungkinan keracunan air yang dapat dideteksi oleh hewan lain.<ref>{{Harvnb|Freund|Stolc|2013}}.</ref>

Sebelum [[gempa bumi L'Aquila 2009]] di Italia, sejumlah [[katak]] menunjukkan perilaku yang tidak biasa, katak-katak tersebut menghilang dari kolam-kolam setempat, tiga hari sebelum gempa tersebut datang.<ref>{{Harvnb|Squires|Rayne|2009}}; {{Harvnb|McIntyre|2009}}.</ref> Mereka juga melaporkan bahwa banyak tikus-tikus yang berlarian disepanjang jalan kota, tidak hanya itu, beberapa hewan lain, seperti ikan, kuda, anjing, dan [[mamalia|hewan mamalia]] lainnya berperilaku aneh.<ref>{{Harvnb|Alexander|2010|p=326}}.</ref>

====Metode emisi radon====
Kebanyakan batuan mengandung sejumlah kecil gas yang secara isotop dapat dibedakan dari gas atmosfer normal.<ref>{{Harvnb|ICEF|2011|p=334}}; {{Harvnb|Hough|2010b|pp=93–95}}.</ref> Ada laporan mengenai lonjakan konsentrasi gas-gas tersebut sebelum terjadinya gempa bumi besar; hal ini disebabkan pelepasan akibat tekanan pra-seismik atau rekahan batuan. Salah satu gas tersebut adalah [[radon]], yang dihasilkan oleh peluruhan radioaktif dari sejumlah kecil uranium yang ada di sebagian besar batuan.<ref>{{Harvnb|ICEF|2011|p=334}}; {{Harvnb|Hough|2010b|pp=93–95}}.</ref>

[[Radon]] berpotensi berguna sebagai alat prediksi gempa bumi, karena bersifat radioaktif sehingga mudah dideteksi, dan waktu paruhnya yang pendek (3,8 hari) membuat kadar radon sensitif terhadap fluktuasi jangka pendek.<ref>{{Harvnb|Cicerone|Ebel|Britton|2009|p=382}}.</ref>

====Metode pengamatan satelit terhadap penurunan suhu tanah====
[[File:Main india night Jan 06-21-28 01.gif|thumb|Rekaman satelit dari [[NASA]] pada tanggal 6, 21 dan 28 Januari 2001 di wilayah Gujarat, India. Yang ditandai dengan tanda bintang adalah episentrum [[Gempa bumi Gujarat 2001|gempa bumi Gujarat pada 26 Januari berkekuatan 7,9]]. Rekaman mengungkapkan anomali termal pada 21 Januari yang ditunjukkan dengan warna merah. Pada rekaman berikutnya, 2 hari setelah gempa, anomali termal tersebut hilang.]]

Salah satu cara untuk mendeteksi tekanan gempa bumi tektonik adalah dengan mendeteksi peningkatan suhu lokal pada permukaan kerak bumi yang diukur dengan [[satelit]]. Selama proses evaluasi, latar belakang variasi harian dan kebisingan akibat gangguan atmosfer dan aktivitas manusia dihilangkan sebelum memvisualisasikan konsentrasi tren di area patahan yang lebih luas. Metode ini telah diterapkan secara eksperimental sejak tahun 1995.<ref>{{Harvnb|Genzano|Aliano|Corrado|Filizzola|2009}}.</ref>

Dalam fenomena ini, Friedmann Freund dari [[NASA]] telah mengusulkan bahwa radiasi [[inframerah]] yang ditangkap oleh satelit bukan disebabkan oleh peningkatan nyata pada suhu permukaan kerak bumi.<ref>{{Harvnb|Genzano|Aliano|Corrado|Filizzola|2009}}.</ref> Menurut versi ini, emisi tersebut merupakan hasil eksitasi kuantum yang terjadi pada ikatan ulang kimiawi pembawa muatan positif (lubang) yang bergerak dari lapisan terdalam ke permukaan kerak bumi dengan kecepatan 200 meter per detik. Muatan listrik tersebut timbul akibat meningkatnya tekanan tektonik seiring dengan mendekatnya waktu gempa. Emisi ini meluas hingga 500 x 500 kilometer persegi untuk kejadian yang sangat besar dan berhenti segera setelah gempa bumi.<ref>{{Harvnb|Genzano|Aliano|Corrado|Filizzola|2009}}.</ref>

== Sistem peringatan gempa ==
[[File:Early Earthquake Warning Systems Map.png|thumb|250px|- Negara yang memiliki sistem peringatan dini gempa bumi (''warna merah'')<br>- Negara yang dalam masa pengembangan peringatan dini gempa bumi (''warna kuning'')]]
Pada tahun 2023, [[Tiongkok]], [[Jepang]], [[Taiwan]], [[Korea Selatan]], dan [[Meksiko]] memiliki sistem peringatan dini gempa bumi nasional yang akurat dan komprehensif.

===Meksiko===
[[File:Receptor del Sistema de Alerta Sísmica para la Ciudad de México.JPG|thumb|200px|SASMEX Sistem peringatan dini gempa bumi di [[Mexico City]]]]
Negara yang mempunyai penerapan sistem peringatan dini gempa bumi, termasuk Meksiko (Sistem Peringatan Seismik Meksiko) atau disebut SASMEX. Sistem peringatan ini memberikan peringatan gempa bumi hingga 60 detik ke [[Mexico City]], [[Acapulco]], [[Kota Puebla]], [[Oaxaca]], [[Guadalajara]], [[Colima]] dan [[Toluca]]. SASMEX dibuat setelah peristiwa mematikan [[Gempa bumi Kota Meksiko 1985]], dalam rangka langkah-langkah kesiapsiagaan darurat.

Jaringan sensor SASMEX yang melayani [[Kota Meksiko]] telah dianggap sebagai sistem peringatan dini gempa pertama yang mengeluarkan peringatan dan tersedia untuk masyarakat umum.<ref>{{cite web|url=http://www.preventionweb.net/files/workspace/7935_suarezandgarciaacosta.pdf|work=UNISDR Scientific and Technical Advisory Group|first1=Gerardo|last1=Suárez|first2=Virginia|last2=García Acosta|title=The seismic alert system in Mexico City: an example of a successful Early Warning System (EWS)|date=2014|accessdate=28 July 2017|url-status=live|archiveurl=https://web.archive.org/web/20151002030032/http://www.preventionweb.net/files/workspace/7935_suarezandgarciaacosta.pdf|archivedate=2 October 2015}}</ref>

===Amerika Serikat===
[[File:ShakeAlert.jpg|thumb|240px|ShakeAlert di [[California]]]]
Di [[Amerika Serikat]]. Sistem pra-deteksi gempa bumi otomatis paling awal dipasang pada tahun 1990an; misalnya, di [[California]], sistem stasiun pemadam kebakaran Calistoga yang secara otomatis memicu sirene seluruh kota untuk memperingatkan seluruh penduduk di wilayah tersebut akan adanya gempa bumi.<ref>{{cite web|url=http://members.napanet.net/~chderham/siren.htm|title=Calistoga to get an earful of nation's first quake siren|first=Pamela|last=Podger|publisher=napanet|date=July 2001|access-date=2012-10-28|archive-url=https://web.archive.org/web/20140223054531/http://members.napanet.net/~chderham/siren.htm|archive-date=2014-02-23|url-status=dead}}</ref>

[[Badan Survei Geologi Amerika Serikat]] (USGS) memulai penelitian dan pengembangan sistem peringatan dini di Pantai Barat Amerika Serikat pada bulan Agustus 2006, dan sistem tersebut mulai dapat dibuktikan pada bulan Agustus 2009. Setelah melalui berbagai fase pengembangan, versi 2.0 diluncurkan pada musim gugur tahun 2018, memungkinkan sistem yang "cukup berfungsi dan teruji" untuk memulai Fase 1 untuk memperingatkan [[California]], [[Oregon]], dan [[Washington]].

ShakeAlert memperingatkan masyarakat mulai tanggal 28 September 2018, pesan-pesan itu sendiri tidak dapat didistribusikan sampai berbagai mitra distribusi swasta dan publik menyelesaikan aplikasi seluler dan melakukan perubahan pada berbagai sistem peringatan darurat. Sistem peringatan pertama yang tersedia untuk umum adalah aplikasi ShakeAlertLA, yang dirilis pada Malam Tahun Baru 2018 (walaupun hanya memperingatkan adanya guncangan di wilayah [[Los Angeles]]). Pada 17 Oktober 2019, Cal OES mengumumkan peluncuran sistem distribusi peringatan di seluruh negara bagian di California, menggunakan aplikasi seluler dan sistem Peringatan Darurat Nirkabel (WEA). California menyebut sistem mereka sebagai Sistem Peringatan Dini Gempa California. Sistem ini peringatan diluncurkan di [[Oregon]] pada 11 Maret 2021 dan di [[Washington]] pada 4 Mei 2021, melengkapi sistem peringatan untuk Pantai Barat.<ref>{{cite news |last=Snibbe |first=Kurt |date=2019-10-15 |title=California's earthquake early warning system is now statewide |trans-title=Sistem peringatan dini gempa California kini diterapkan di seluruh negara bagian |url=https://www.mercurynews.com/2019/10/15/what-you-should-and-should-not-do-during-an-earthquake/ |work=Mercury News |language=en |access-date=2019-12-31}}</ref>

===Jepang===
[[File:Earthquake Early Warning (Japan)-en.png|thumb|230px|Mekanisme sistem peringatan dini gempa bumi di Jepang]]
[[File:Earthquake-Early-Warning-on-Smartphone 02.jpg|thumb|230px|Sistem Peringatan Gempa (EEW) pada Ponsel di Jepang]]
[[File:Emergency broadcast in Uenohara city 211105.opus|thumb|230px|Suara dari sistem peringatan (EEW) pada Ponsel]]
Di [[Jepang]] sistem peringatan dini gempa bumi, dibuat oleh [[Badan Meteorologi Jepang]], sistem peringatan tersebut bernama (EEW) '''''Earthquake Early Warning'''''. Sistem ini menggunakan [[gelombang seismik]]. Sistem tersebut akan diperingati melalui ponsel seluler, saluran televisi, dan radio. Jepang meluncurkan sistem peringatan dini gempa nasional pertama yang tersedia untuk umum di dunia pada tahun 2007. Sistem ini mendeteksi gelombang yang datang paling awal yang dihasilkan oleh gempa di bawah tanah ([[Gelombang-P]]) dan bertujuan untuk mengeluarkan peringatan sebelum gelombang yang lebih lambat dan lebih merusak datang kemudian ([[Gelombang-S]]).<ref>Sankei-MSN News (2011-05-01 21:55) "The Earthquake Early Warning – the chime contained the tone of pains, even examined the 'Godzilla'" {{cite web|url=http://sankei.jp.msn.com/affairs/news/110501/dst11050121570027-n1.htm|script-title=ja:緊急地震速報…チャイムに苦心の音色 「ゴジラ」の検討も|date=2011-05-01|publisher=[[MSN]]|access-date=2011-06-26|url-status=dead |archive-url=https://web.archive.org/web/20110713125134/http://sankei.jp.msn.com/affairs/news/110501/dst11050121570027-n1.htm|archive-date=13 July 2011|language=ja}}</ref>

Sistem ini dikembangkan untuk meminimalkan kerusakan akibat gempa dan memungkinkan masyarakat untuk berlindung atau mengevakuasi daerah berbahaya sebelum datangnya guncangan yang kuat. Sistem ini digunakan oleh kereta api untuk memperlambat kereta dan oleh pabrik untuk menghentikan jalur perakitan sebelum gempa terjadi.

Efektivitas peringatan tergantung pada posisi penerimanya. Setelah menerima peringatan, seseorang memiliki waktu beberapa detik hingga satu menit atau lebih untuk mengambil tindakan. Daerah dekat pusat gempa mungkin akan mengalami guncangan hebat sebelum peringatan dikeluarkan.<ref name="JMA-outline(en)">{{cite news|url=http://www.jma.go.jp/jma/en/Activities/eew1.html|title=What is the Earthquake Early Warning (or "緊急地震速報 (Kinkyu Jishin Sokuho)" in Japanese)?|date=2007-08-30|access-date=2008-06-29|publisher=Japan Meteorological Agency}}</ref>

Setelah [[Gempa bumi dan tsunami Tōhoku 2011]], sistem (EEW) dan sistem peringatan tsunami Jepang dianggap efektif. Meskipun tsunami menewaskan lebih dari 20.000 orang, dan diyakini bahwa jumlah korban jiwa akan jauh lebih besar tanpa sistem peringatan (EEW).

===Tiongkok===
[[File:国家烈预工程监测台站图.png|thumb|250px|Sistem peringatan gempa Tiongkok (EEWS), 150.000 stasiun pemantauan dipasang]]
Sistem peringatan gempa di [[Tiongkok]] dibangun pada tahun 1990an. Kehancuran akibat [[Gempa bumi Sichuan 2008]] mendorong investasi Tiongkok dalam sistem peringatan dini gempa bumi nasional (EEWS). Sejumlah stasiun pemantauan, sensor, dan sistem analitik dipasang untuk meningkatkan akurasi, daya tanggap, dan kelengkapan data gempa. Pada bulan Juni 2019, sistem peringatan gempa nasional (EEWS), berhasil memperingatkan sebuah kota akan terjadinya gempa berkekuatan 6,0 {{M|w|link=y}} antara 10-27 detik sebelum guncangan tiba.

Pada tahun 2023, (EEWS) nasional telah selesai dibangun, dengan 150.000 stasiun pemantauan, dikelola oleh tiga pusat nasional, 31 pusat provinsi, 173 pusat prefektur dan kota. Sistem peringatan dini gempa Tiongkok adalah jaringan seismik terbesar di dunia.<ref name="ie_2306">{{cite web |url=https://interestingengineering.com/innovation/china-worlds-largest-earthquake-early-warning-system |title=China is building the world’s largest earthquake early warning system|trans-title=Tiongkok sedang membangun sistem peringatan dini gempa bumi terbesar di dunia|website=Interesting Engineering|language=en |date=10 Juni 2023 |first=Sejal |last=Sharma }}</ref>

===Indonesia===
Di [[Indonesia]], sistem peringatan dini gempa bumi saat ini dalam masa pengembangan, sistem tersebut bernama (EWAS) ''Earthquake Early Warning System'', sistem pendeteksi guncangan ini difungsikan untuk memberikan tanda peringatan kehadiran gempa bumi kepada masyarakat secara otomatis dan sangat cepat. Sistem ini diharapkan dapat meningkatkan rasa aman sekaligus kewaspadaan masyarakat di daerah-daerah rawan bencana gempa bumi yang makin sering terjadi.

(EWAS) memberi tanda peringatan gempa bumi berupa bunyi sirine yang keras di tengah masyarakat tepat saat guncangan gempa terjadi. EWAS efektif mendeteksi guncangan gempa dan membunyikan alarm peringatan dalam waktu kurang dari 5 detik. Tidak harus menunggu pesan SMS atau whatsapp yang baru mengabarkan gempa 5 menit setelah gempa terjadi.

Ketika alarm EWAS berbunyi, sudah pasti itu akibat gempa, bukan karena truk melintas atau karena adanya perkerjaan renovasi/konstruksi bangunan. Masyarakat tidak perlu ragu, segera bergegas keluar bangunan menuju tempat yang lapang, agar terhindar dari bahaya terkena runtuhan bangunan.

Sistem EWAS dibangun dari sejumlah detektor getaran tanah (node) yang dipasang di suatu lingkungan pemukiman, misalnya suatu desa atau kelurahan; atau gedung apartemen, gedung perkantoran, kawasan industri hingga daerah wisata pantai dan pegunungan serta tempat wisata lainnya yang ramai pengunjungnya. Setiap node saling berkomunikasi melalui gelombang radio. Sehingga jarak antar node tergantung dari jangkauan komunikasi radio antar node. Sejauh ini Sistem EWAS yang sudah terpasang jarak antar nodenya sekitar 200-300 meter.<ref>{{cite web|title=Earthquake Early Warning System di Indonesia|url=https://geosciences.ui.ac.id/earthquake-warning-alert-system-ewas/|website=Geoscience.ui.ac.id|access-date=22 April 2024}}</ref>

===Sistem Global===
====Detektor Gempa====
[[File:Network-globe-icon 512 wave.png|thumb|200px|Logo dari [[:en:Earthquake Network|Detektor Gempa]] dari Francesco Finazzi, kini dapat di install melalui aplikasi Android]]
[[File:Earthquake Network spatial distribution.jpg|thumb|270px|Pengguna aplikasi Detektor Gempa "Earthquake Network"]]
Pada bulan Januari 2013, Francesco Finazzi dari [[Universitas Bergamo]] memulai proyek penelitian Jaringan Gempa yang bertujuan untuk mengembangkan dan memelihara sistem peringatan gempa crowdsourced berdasarkan jaringan ponsel pintar. Ponsel pintar digunakan untuk mendeteksi guncangan tanah yang disebabkan oleh gempa bumi dan peringatan dikeluarkan segera setelah gempa terdeteksi. Masyarakat yang tinggal pada jarak yang lebih jauh dari pusat gempa dan titik deteksi mungkin akan diperingatkan sebelum mereka terkena gelombang gempa yang merusak.

Masyarakat dapat mengambil bagian dalam proyek ini dengan menginstal aplikasi [[Android]] "Earthquake Network" di ponsel pintar mereka. Aplikasi ini mengharuskan ponsel untuk menerima peringatan.<ref name="finazzifasso">{{cite journal|last1=Finazzi|first1=Francesco |last2=Fassò|first2=Alessandro |year=2016|journal=Stochastic Environmental Research and Risk Assessment|volume=31 |issue=7 |pages=1649–1658 |title=A statistical approach to crowdsourced smartphone-based earthquake early warning systems|doi=10.1007/s00477-016-1240-8 |arxiv=1512.01026|s2cid=123910895 }}</ref><ref name="finazzi">{{cite journal|last1=Finazzi|first1=Francesco|year=2016|journal=Bulletin of the Seismological Society of America|volume=106|issue=3|pages=1088–1099|title=The Earthquake Network Project: Toward a Crowdsourced Smartphone‐Based Earthquake Early Warning System|access-date=10 June 2016|doi=10.1785/0120150354|url=http://www.bssaonline.org/content/106/3/1088.full|arxiv=1512.01026|bibcode=2016BuSSA.106.1088F|s2cid=88515799}}{{Dead link|date=February 2024 |bot=InternetArchiveBot |fix-attempted=yes }}</ref>

"Earthquake Network" atau '''''"Detektor Gempa"''''' kini dapat di install dalam aplikasi [[Play Store]] untuk seluruh pengguna global.

====Sistem Peringatan Gempa Android====
Pada 11 Agustus 2020, [[Google]] mengumumkan bahwa sistem operasi Android-nya akan mulai menggunakan akselerometer di perangkat untuk mendeteksi gempa bumi (dan mengirimkan datanya ke "peladen pendeteksi gempa" perusahaan). Karena jutaan ponsel beroperasi pada Android, dan menghasilkan jaringan pendeteksi gempa terbesar di dunia.

Data yang dikumpulkan oleh perangkat Android hanya digunakan untuk memberikan informasi cepat mengenai gempa bumi melalui Google Penelusuran, meskipun perangkat tersebut selalu direncanakan untuk mengeluarkan peringatan untuk banyak area lain berdasarkan kemampuan deteksi Google di masa mendatang.

Pada tanggal 28 April 2021, Google mengumumkan peluncuran sistem peringatan ke [[Yunani]] dan [[Selandia Baru]], negara pertama yang menerima peringatan berdasarkan kemampuan deteksi Google sendiri. Peringatan Google diperluas ke [[Turki]], [[Filipina]], [[Kazakhstan]], [[Kyrgyzstan]], [[Tajikistan]], [[Turkmenistan]], dan [[Uzbekistan]] pada bulan Juni 2021.<ref>{{cite web |url=https://blog.google/products/android/introducing-android-earthquake-alerts-outside-us/ |title=Introducing Android Earthquake Alerts outside the U.S. |last=Spooner |first=Boone |date=April 28, 2021 |website=Google blog |publisher=Google |access-date=May 6, 2021}}</ref>

== Penanggulangan ==
[[File:Earthquake Kit in Japan 2008.jpg|thumb|240px|Perlengkapan tas siaga gempa di Jepang]]
===Mitigasi===
Persiapan untuk menghadapi gempa bumi dapat terdiri dari tindakan mitigasi, yang berupaya meminimalisir dampak gempa bumi. Tindakan bertahan hidup yang umum mencakup seperti menyimpan makanan kaleng, senter, alat [[P3K]], dan air untuk keadaan darurat, hingga memberikan panduan kepada masyarakat apa yang harus dilakukan saat gempa terjadi.<ref>{{cite web|url=http://www2.gov.bc.ca/gov/content/safety/emergency-preparedness-response-recovery/preparedbc/know-the-risks/earthquakes|title=Earthquakes - Province of British Columbia|access-date=2016-08-24|archive-date=2019-04-04|archive-url=https://web.archive.org/web/20190404155036/https://www2.gov.bc.ca/gov/content/safety/emergency-preparedness-response-recovery/preparedbc/know-the-risks/earthquakes|url-status=dead}}</ref>

[[File:09.21 9時21分警報響起,現場師生立即就地尋找掩蔽 (37172112026).jpg|thumb|240px|Sebuah latihan mitigasi gempa bumi yang diadakan oleh sekolah di [[Taiwan]]]]
Langkah-langkah mitigasi dapat mencakup mengamankan benda yang kuat, dan jauh dari tempat tidur, seperti perabot berukuran besar (contoh rak buku, lemari besar, layar TV dan komputer) yang mungkin terjatuh saat terjadi gempa bumi. Lalu menghindari menyimpan barang di atas tempat tidur atau sofa, dan menghindari tempat tidur berada di atas sebuah jendela, demi menghindari resiko terkena puing-puing pecahan kaca saat gempa terjadi. Lalu menyimpan benda-benda tajam seperti pisau dengan baik di lemari.

Kesiapsiagaan dimulai dari kehidupan sehari-hari seseorang dan melibatkan benda-benda serta pelatihan yang berguna saat terjadi gempa bumi. Kesiapsiagaan berlanjut dalam sebuah kontinum dari kesiapan individu hingga kesiapan anggota keluarga, saat menghadapi bencana gempa bumi.

[[File:0134jfNationwide Simultaneous Earthquake Drill Philippinesfvf 15.jpg|thumb|240px|Latihan mitigasi bencana gempa di [[Filipina]]]]
Beberapa negara dengan resiko bencana gempa bumi tinggi seperti [[Indonesia]].<ref>{{cite web|title=Jakarta Intensifkan Mitigasi Gempa Bumi|url=https://www.kompas.id/baca/metro/2024/05/29/jakarta-intensifkan-mitigasi-gempa-bumi|website=[[Kompas.id]]|access-date=3 Agustus 2024}}</ref> Kesiapsiagaan masyarakat umumnya masih rendah, terutama dalam lingkungan sekolah dan pekerjaan, meskipun ada upaya untuk meningkatkan kesadaran masyarakat.<ref>{{cite journal |last1=Joffe |first1=H. |last2=Rossetto |first2=T. |last3=Solberg |first3=C. |last4=O'Connor |first4=C. |title=Social Representations of Earthquakes: A Study of People Living in Three Highly Seismic Areas |journal=Earthquake Spectra |date=2013 |volume=29 |issue=2 |pages=367–397 |doi=10.1193/1.4000138|bibcode=2013EarSp..29..367J |s2cid=53648708 |url=http://eprints.maynoothuniversity.ie/6783/1/COC-Social-Representations.pdf }}</ref>

Banyak berbagai metode untuk meningkatkan kesiapsiagaan bencana, namun metode tersebut jarang terdokumentasi dengan baik dan efektivitasnya jarang diuji. Pelatihan langsung, latihan, dan interaksi tatap muka terbukti lebih berhasil dalam mengubah perilaku.<ref>{{cite web|title=Pakar UGM Ungkap Fakta Pentingnya Mitigasi Bencana Gempa di Indonesia|url=https://www.liputan6.com/amp/5505089/pakar-ugm-ungkap-fakta-pentingnya-mitigasi-bencana-gempa-di-indonesia|website=[[Liputan 6]]|access-date=3 Agustus 2024}}</ref>

===Struktur tahan gempa===
[[File:Pole 3 building seismic base isolator.jpg|thumb|240px|Isolator anti seismik pada bangunan]]
Struktur tahan gempa atau struktur aseismik dirancang untuk melindungi bangunan pada tingkat tertentu atau lebih besar dari gempa bumi. Meskipun tidak ada struktur yang sepenuhnya tahan terhadap kerusakan akibat gempa, tujuan dari rekayasa gempa adalah untuk mendirikan struktur yang berfungsi lebih baik selama aktivitas seismik dibandingkan struktur konvensional.

Menurut peraturan bangunan, struktur tahan gempa dimaksudkan untuk menahan gempa bumi terbesar dengan kemungkinan tertentu yang mungkin terjadi di lokasinya. Ini berarti korban jiwa harus diminimalkan dengan mencegah runtuhnya bangunan jika terjadi gempa bumi yang jarang terjadi, sementara hilangnya fungsi harus dibatasi pada gempa yang lebih sering terjadi.

{{Multiple image
|align = left
|direction = vertical
|width = 200
|image1 = Taipei 101 Tuned Mass Damper 2010.jpg
|caption1 =
|image2 = Taipei 101 Tuned Mass Damper.png
|caption2 = Sebuah [[Bandul]] seberat 800 ton pada menara [[Taipei 101]], mampu menahan efek guncangan gempa bumi
}}
Untuk mengurangi kehancuran akibat gempa, satu-satunya metode yang tersedia bagi para arsitek kuno adalah membangun bangunan bersejarah mereka agar tahan lama, sering kali dengan membuatnya terlalu kaku dan kuat.<ref name=Reitherman>{{cite book|last=Reitherman|first=Robert|title=Earthquakes and Engineers: An International History|year=2012|publisher=ASCE Press|location=Reston, VA|isbn=9780784410714|pages=356–357|url=http://www.asce.org/Product.aspx?id=2147487208&productid=154097877|url-status=dead|archive-url=https://web.archive.org/web/20120726183407/http://www.asce.org/Product.aspx?id=2147487208&productid=154097877|archive-date=2012-07-26}}</ref>

Bangunan anti seismik di daerah rawan gempa mungkin memiliki persyaratan khusus yang dirancang untuk meningkatkan ketahanan bangunan baru terhadap gempa. Bangunan tua dan rumah yang tidak memenuhi standar dapat dimodifikasi untuk meningkatkan ketahanannya. Modifikasi dan desain tahan gempa juga diterapkan pada [[jalan layang]] dan [[jembatan]].

Teknik modifikasi gempa dan peraturan bangunan modern dirancang untuk mencegah kehancuran total bangunan akibat gempa bumi yang tidak lebih besar dari 8,5 [[Skala Richter]].<ref name="SFGate">{{Cite news|url = http://www.il-st-acad-sci.org/kingdom/geo1001.html|title = What San Francisco didn't learn from the '06 quake|access-date = 20 June 2011|last = Smith|first = Charles|date = 2006-04-15|work = [[San Francisco Chronicle]]|archive-date = 2009-10-26|archive-url = https://web.archive.org/web/20091026124131/http://www.il-st-acad-sci.org/kingdom/geo1001.html|url-status = dead}}</ref>

===Rumah tahan gempa tradisional===
[[Berkas:Baduy Village House.jpg|thumb|240px|[[Rumah adat Baduy|Rumah adat]] [[Suku Badui]] yang dikenal tahan terhadap guncangan gempa bumi]]

Banyaknya gempa yang terjadi di Indonesia sejak zaman dahulu membuat Leluhur kita beradaptasi dan menerapkan sikap tangguh bencana, terutama pada hunian mereka. Hal serupa terjadi hampir di seluruh wilayah Indonesia sehingga membuat rumah-rumah adat di Indonesia umumnya merupakan bangunan tahan gempa.

Beberapa rumah adat tahan gempa diantaranya pada [[Rumah Gadang]], rumah adat [[Sumatera Barat]], [[Rumah adat Aceh]], [[Rumah Joglo]], [[Rumah kaki seribu]], [[Rumah panggung Betawi]] dan [[Rumah adat Baduy]]. Bangunan dengan bentuk yang sangat khas ini dikatakan tahan gempa karena memiliki konstruksi yang cukup unik. Bentuk kolom pada bangunan adat biasanya tidak lurus, melainkan sedikit miring. Selain itu, kolom-kolom tersebut tidak langsung ditancapkan ke tanah melainkan bertumpu pada batu datar yang kuat dan lebar.<ref>{{cite web|title=Pertahankan Rumah Adat dengan Kearifan Lokal! Lebih Tahan Gempa?|url=https://www.masterplandesa.com/desa-adat/pertahankan-rumah-adat-dengan-kearifan-lokal-lebih-tahan-gempa|website=masterplandesa.com|access-date=16 September 2024}}</ref>

Selain itu, faktor lain yang menyebabkan rumah adat lebih tahan gempa adalah material yang digunakan. Umumnya, rumah adat menggunakan material lokal daerahnya, contohnya seperti material kayu yang memiliki daya lentur yang lebih baik dibanding material modern seperti beton. Selain itu, sambungan antar balok menggunakan pin dan ikatan sehingga lebih fleksibel jika dihantam gempa.<ref>{{cite web|title=Rumah Adat Tahan Gempa|url=https://indonesiabaik.id/infografis/rumah-adat-tahan-gempa|website=masterplandesa.com|access-date=16|website=Indonesia baik.id|access-date=16 September 2024}}</ref>

== Zona Gempa ==
[[File:EQs 1900-2015 china.png|thumb|240px|Gempa bumi M 4.5+ dari (1900–2015). Bintang kuning adalah episentrum [[Gempa bumi Sichuan 2008]]]]
Terdapat dua zona atau sirkum gempa besar, keduanya bertempat di pertemuan antara dua lempeng tektonik.
Zona Pertama, yang juga disebut [[Cincin Api Pasifik]] atau Pacifik Ring Of Fire, terletak di sekitar Samudera Pasifik, Melintasi Benua [[Asia]] bagian Timur, [[Benua Amerika]] bagian barat dan [[Pulau Papua]] di [[Benua Australia]]. Melintasi Amerika serikat. Sebagian besar wilayah San Fransisco pada tahun 1906, juga hancur akibat gempa yang melanda pada zona tersebut. bahkan negara Indonesia juga termasuk dalam dua zona seperti [[Cincin Api Pasifik]] dan [[Sabuk alpida]] yang terkena dampak gempanya.<ref>{{Cite book|date=2008|title=Ensiklopedia Pengetahuan Populer|location=Jakarta|publisher=Lentera|isbn=978-979-3535-28-9|pages=143|url-status=live}}</ref>
Zona Kedua melewati Selatan [[Eurasia]] (Ini tidak termasuk kawasan Asia dari [[Gondwana]] seperti Semenanjung Arab dan Anak Benua India) dan terus ke arah [[Laut Tengah]] sampai ke [[Pegunungan atlas]] di [[Afrika Utara]].

== Gempa bumi pada abad ke-21 ==
{{Lihat pula|Daftar gempa bumi terkuat sepanjang sejarah}}
* <small>'''Note''': Berikut ini adalah daftar gempa bumi mematikan dari tahun 2000–Sekarang; <br> '''Setidaknya >1,000 korban jiwa'''</small>

{|class="wikitable sortable"
|-
!Rank
! scope="col" | Tanggal
! scope="col" | Lokasi
! scope="col" | Artikel
! scope="col" | Korban
! scope="col" | Magnitudo
|-
! 1
| {{dts|2010-01-12}}
| {{bendera|Haiti}}, [[Port-au-prince]]
| [[Gempa bumi Haiti 2010]]
| 220,000–316,000
| 7.0
|-
! 2
| {{dts|2004-12-26}}
| {{bendera|Indonesia}}, [[Sumatra]], [[Samudra Hindia]]
| [[Gempa bumi dan tsunami Samudra Hindia 2004]]
| 227,898
| 9.1–9.3
|-
! 3
| {{dts|2008-05-12}}
| {{bendera|Tiongkok}}, [[Sichuan]]
| [[Gempa bumi Sichuan 2008]]
| 87,587
| 7.9
|-
! 4
| {{dts|2005-10-08}}
| {{bendera|Pakistan}}<br>{{bendera|India}}, [[Kashmir]]
| [[Gempa bumi Asia Selatan 2005]]
| 87,351
| 7.6
|-
! 5
| {{dts|2023-02-06}}
| {{bendera|Turki}}<br>{{bendera|Suriah}}, [[Gaziantep]]
| [[Gempa bumi Turki–Suriah 2023]]
| 62,013
| 7.8
|-
! 6
| {{dts|2003-12-26}}
| {{bendera|Iran}}, [[Kerman]]
| [[Gempa bumi Bam 2003]]
| 34,000
| 6.6
|-
! 7
| {{dts|2001-01-26}}
| {{bendera|India}}, [[Gujarat]]
| [[Gempa bumi Gujarat 2001]]
| 20,026
| 7.7
|-
! 8
| {{dts|2011-03-11}}
| {{bendera|Jepang}}, [[Tōhoku]]
| [[Gempa bumi dan tsunami Tōhoku 2011]]
| 19,759
| 9.0–9.1
|-
! 9
| {{dts|2015-04-25}}
| {{bendera|Nepal}}
| [[Gempa bumi Nepal April 2015]]
| 8,964
| 7.8
|-
! 10
| {{dts|2006-05-27}}
| {{bendera|Indonesia}}, [[Yogyakarta]]
| [[Gempa bumi Yogyakarta 2006]]
| 5,778
| 6.4
|-
! 11
| {{dts|2018-09-28}}
| {{bendera|Indonesia}}, [[Sulawesi Tengah]]
| [[Gempa bumi dan tsunami Sulawesi 2018]]
| 4,340
| 7.5
|-
! 12
| {{dts|2023-09-08}}
| {{bendera|Maroko}}, [[Marrakesh-Safi]]
| [[Gempa bumi Maroko 2023]]
| 2,960
| 6.8
|-
! 13
| {{dts|2010-04-13}}
| {{bendera|Tiongkok}}, [[Qinghai]]
| [[Gempa bumi Yushu 2010]]
| 2,698
| 6.9
|-
! 14
| {{dts|2003-05-21}}
| {{bendera|Aljazair}}, [[Algiers]]
| [[Gempa bumi Boumerdes 2003]]
| 2,226
| 6.8
|-
! 15
| {{dts|2021-08-14}}
| {{bendera|Haiti}}, [[Les Cayes]]
| [[Gempa bumi Haiti 2021]]
| 2,248
| 7.2
|-
! 16
| {{dts|2023-10-07}}
| {{bendera|Afghanistan}}, [[Herat]]
| [[Gempa bumi Herat 2023]]
| 1,482
| 6.3
|-
! 17
| {{dts|2005-03-28}}
| {{bendera|Indonesia}}, [[Sumatra]]
| [[Gempa bumi Sumatra 2005]]
| 1,314
| 8.6
|-
! 18
| {{dts|2022-06-21}}
| {{bendera|Afghanistan}}
| [[Gempa bumi Asia Selatan 2022]]
| 1,163
| 6.0
|-
! 19
| {{dts|2009-09-30}}
| {{bendera|Indonesia}}, [[Sumatera Barat]]
| [[Gempa bumi Sumatra Barat 2009]]
| 1,115
| 7.6
|}

== Dalam budaya ==
=== Pandangan sejarah ===
[[File:Illustration from Views in the Ottoman Dominions by Luigi Mayer, digitally enhanced by rawpixel-com 29.jpg|thumb|240px|Sebuah ilustrasi [[:en:1783 Calabrian earthquakes|Gempa bumi di Calabria, Italia]] tahun 1783]]

Sejak masa filsuf Yunani [[Anaxagoras]] pada abad ke-5 SM hingga abad ke-14 M, gempa bumi biasanya dikaitkan dengan "udara (uap) di rongga-rongga bumi". [[Thales]] dari Miletus (625–547 SM) adalah satu-satunya orang yang terdokumentasi dan percaya bahwa gempa bumi disebabkan oleh ketegangan antara bumi dan air.<ref name=World>{{cite encyclopedia
|title=Earthquakes
|encyclopedia=Encyclopedia of World Environmental History
|volume=1: A–G
|pages=358–364
|publisher=Routledge
|year=2003 }}</ref> Ada teori lain, termasuk keyakinan filsuf Yunani Anaxamines (585–526 SM) bahwa tanah yang kering dan basah dapat menyebabkan aktivitas seismik. Filsuf Yunani [[Democritus]] (460–371 SM) menyalahkan air sebagai penyebab utama gempa bumi. [[Plinius Tua]] menyebut bahwa gempa bumi sebagai sebuah "badai petir bawah tanah".

=== Mitologi dan agama ===
Dalam [[Mitologi Nordik]], gempa bumi dijelaskan sebagai perjuangan keras dewa [[Loki]]. Ketika Loki, dewa kejahatan dan perselisihan, membunuh Baldr, dewa keindahan dan cahaya, dia dihukum dengan diikat di sebuah gua dengan ular berbisa ditempatkan di atas kepalanya yang meneteskan racun. Istri Loki, Sigyn, berdiri di sampingnya dengan mangkuk untuk menangkap racun, tetapi setiap kali dia harus mengosongkan mangkuk, racun itu menetes ke wajah Loki, memaksanya untuk menyentakkan kepalanya dan meronta-ronta ke ikatannya, yang menyebabkan bumi bergetar.

Dalam [[mitologi Yunani]], [[Poseidon]] adalah penyebab dan dewa gempa bumi. Ketika suasana hatinya sedang buruk, dia menghantam tanah dengan trisula, menyebabkan gempa bumi dan bencana lainnya. Dia juga menggunakan gempa bumi untuk menghukum dan menakuti orang-orang sebagai balas dendam.<ref name="Dimock1990">{{cite book|author=George E. Dimock|title=The Unity of the Odyssey|url=https://books.google.com/books?id=hS1acr-lOeEC&pg=PA179|year=1990|publisher=Univ of Massachusetts Press|isbn=978-0-87023-721-8|pages=179–}}</ref>

Dalam [[mitologi Jepang]], [[Ōnamazu]] adalah ikan lele raksasa yang menyebabkan gempa bumi. Ōnamazu tinggal di lumpur di bawah bumi dan dijaga oleh dewa Kashima yang menahan ikan dengan batu. Saat Kashima lengah, ōnamazu meronta-ronta, dan menyebabkan gempa bumi yang dahsyat.<ref>{{Cite encyclopedia|url=http://www.worldhistory.org/Namazu/|title=Namazu|encyclopedia=World History Encyclopedia|access-date=2017-07-23|archive-date=2021-04-23|archive-url=https://web.archive.org/web/20210423164505/https://www.worldhistory.org/Namazu/|dead-url=no}}</ref>

=== Budaya Populer ===
[[File:Valdivia after earthquake, 1960.jpg|thumb|240px|[[Gempa bumi Valdivia 1960]]. Gempa terbesar yang pernah tercatat]]
Dalam budaya populer modern, penggambaran gempa bumi dibentuk oleh kenangan kota-kota besar yang hancur oleh gempa, seperti yang terjadi pada [[Gempa bumi besar Hanshin|Gempa bumi Kobe tahun 1995]], [[Gempa bumi San Francisco 1906]] atau [[Gempa bumi Kota Meksiko 1985]].

====Film dan televisi====
Beberapa [[film fiktif]] populer yang menggambarkan kehancuran gempa bumi pada suatu kota, dan di masa mendatang, yang diperkirakan akan terjadi di [[Patahan San Andreas]] California suatu hari nanti. Beberapa [[film bencana]] terpopuler diantaranya;
* ''[[2012 (film)|2012]]'' (2009) - Film fiktif bencana Amerika Serikat
* ''[[Aftershock (film)|Aftershock]]'' (2010) - Film drama Tiongkok, terinpirasi dari peristiwa [[Gempa bumi Tangshan 1976]].
* ''[[Hafalan Shalat Delisa]]'' (2011) - Film drama Indonesia, terinpirasi dari bencana [[Gempa bumi dan tsunami Samudra Hindia 2004|Gempa bumi dan tsunami Aceh tahun 2004]]
* ''[[San Andreas (film)|San Andreas]]'' (2015) - Film bencana Amerika Serikat, berdasarkan gempa bumi pada [[Patahan San Andreas]]
* ''[[Earthquake (film 2016)|Earthquake]]'' (2016) - Film drama Rusia-Armenia berdasarkan peristiwa [[Gempa bumi Spitak 1988|Gempa bumi Armenia 1988]]
* ''[[Suzume]]'' (2022) - Film petualangan fantasi animasi Jepang, berdasarkan peristiwa [[Gempa bumi dan tsunami Tōhoku 2011]]

== Lihat pula ==
* [[Badan Meteorologi Klimatologi dan Geofisika]]
* [[Skala intensitas Mercalli yang dimodifikasi]]
* [[Percepatan tanah puncak]]
* [[Daftar gempa bumi di Indonesia]]
* [[Cahaya gempa]] - Fenomena kilatan cahaya saat gempa bumi terjadi
* [[Pencairan tanah]] - Fenomena perubahan tanah menjadi cair akibat guncangan gempa bumi
* [[Gempa mars]] - Fenomena gempa di planet [[Mars]]
* [[Gempa (fenomena alam)]]
* [[Seismologi]] - Ilmu geofisika yang mempelajari mekanisme terjadinya gempa bumi dan disertai dengan gelombang seismik.
* [[Geologi]] - salah satu cabang ilmu kebumian yang mempelajari tentang Bumi dan segala isi di dalamnya


== Referensi ==
== Referensi ==
Baris 156: Baris 575:


== Pranala luar ==
== Pranala luar ==
* {{id}} [http://www.bmkg.go.id/BMKG_Pusat/Geofisika/terkini.bmkg Badan Meteorologi, Klimatologi, dan Geofisika]
* {{id}} [http://www.bmkg.go.id/BMKG_Pusat/Geofisika/terkini.bmkg Badan Meteorologi, Klimatologi, dan Geofisika] {{Webarchive|url=https://web.archive.org/web/20230415044311/https://www.bmkg.go.id/BMKG_Pusat/Geofisika/terkini.bmkg |date=2023-04-15 }}
* {{en}} [http://earthquake.usgs.gov/ Situs web Gempabumi USGS]
* {{en}} [http://earthquake.usgs.gov/ Situs web Gempabumi USGS] {{Webarchive|url=https://web.archive.org/web/20151211172659/http://earthquake.usgs.gov/ |date=2015-12-11 }}
* {{en}} [http://www.emsc-csem.org/ European-Mediterranean Seismological Center], Situs web informasi waktu tepat gempa Bumi.
* {{en}} [http://www.emsc-csem.org/ European-Mediterranean Seismological Center] {{Webarchive|url=https://web.archive.org/web/20080819195049/http://www.emsc-csem.org/ |date=2008-08-19 }}, Situs web informasi waktu tepat gempa Bumi.

{{Navbox gempa bumi}}
{{Rekayasa geoteknik}}
{{Authority control}}


[[Kategori:Seismologi]]
[[Kategori:Seismologi]]
[[Kategori:Bencana alam]]
[[Kategori:Bencana alam]]

{{Link FA|bs}}
{{Link FA|sk}}
{{Link GA|sv}}
{{Link GA|tt}}

Revisi terkini sejak 28 Oktober 2024 05.25

Gempa bumi dengan skala magnitudo 6,0+ dari tahun 1900 sampai 2017
Bangunan hancur akibat dari Gempa bumi Yogyakarta Mei 2006

Gempa bumi (bahasa Inggris: Earthquake) adalah fenomena guncangan permukaan tanah akibat pelepasan energi secara tiba-tiba di bawah litosfer sehingga menimbulkan gelombang seismik. Intensitas gempa bumi bisa bermacam-macam, mulai dari gempa yang sangat lemah dan tidak dapat dirasakan, hingga gempa bumi dahsyat yang melempar benda-benda ke udara, merusak infrastruktur penting, dan menimbulkan kehancuran di seluruh kota. Aktivitas gempa bumi di suatu lokasi tertentu adalah laju rata-rata pelepasan energi seismik per satuan volume.

Gempa bumi dapat terjadi secara alami atau disebabkan oleh aktivitas manusia, seperti penambangan, fracking, dan uji coba nuklir. Titik awal pecahnya disebut hiposenter atau fokus, sedangkan permukaan tanah yang berada tepat di atasnya disebut episentrum. Gempa bumi dapat disebabkan oleh kesalahan geologis, atau oleh aktivitas gunung berapi, tanah longsor, dan peristiwa lainnya. Frekuensi, jenis, dan ukuran gempa bumi di suatu wilayah menentukan aktivitas seismiknya, yang mencerminkan tingkat rata-rata pelepasan energi seismik.

Peristiwa gempa bumi yang paling terkenal adalah gempa bumi dan tsunami Samudra Hindia 2004, memakan lebih dari 230.000 korban jiwa, dan gempa bumi terkuat yang pernah tercatat yaitu gempa bumi Valdivia 1960 di Chili dengan skala 9,5 Mw. Salah satu gempa bumi paling mematikan dalam sejarah adalah Gempa bumi Shaanxi 1556, yang terjadi pada tanggal 23 Januari 1556 di Provinsi Shaanxi, Tiongkok. Lebih dari 830.000 orang meninggal.[1] Sebagian besar penduduk tinggal di yaodong, sebuah bangunan berbahan batu dan tanah liat, banyak korban yang tewas ketika bangunan tersebut runtuh. Gempa bumi Tangshan 1976, yang menewaskan antara 240.000 dan 655.000 orang, merupakan gempa bumi paling mematikan dalam sejarah modern hingga saat ini.

Gempa bumi menimbulkan berbagai dampak, seperti guncangan tanah dan pencairan tanah, yang mengakibatkan kerusakan besar dan korban jiwa. Jika episentrum gempa besar terletak di lepas pantai, dasar laut mungkin akan mengalami pergeseran yang cukup besar sehingga menyebabkan tsunami. Gempa bumi juga dapat memicu tanah longsor. Gempa bumi dipengaruhi oleh pergerakan lempeng tektonik di sepanjang sesar aktif, termasuk sesar normal, sesar terbalik (dorong), dan sesar mendatar, dengan dinamika pelepasan energi dan patahan yang diatur oleh teori pantulan elastis.

Terminologi

[sunting | sunting sumber]

Gempa bumi dapat berlangsung dalam hitungan 10 hingga 30 detik. Dalam peristiwa gempa bumi berdorongan besar, guncangan dapat berlangsung 5–7 menit, seperti pada peristiwa gempa bumi Sumatra 2004, yang berlangsung hingga 10 menit lamanya.

Dalam pengertian yang paling umum, gempa bumi adalah peristiwa seismik apa pun—baik yang terjadi secara alami maupun yang disebabkan oleh manusia—yang menimbulkan gelombang seismik. Gempa bumi sebagian besar disebabkan oleh pecahnya patahan geologi, namun juga disebabkan oleh peristiwa lain seperti aktivitas gunung berapi, tanah longsor, ledakan ranjau, fracking, dan uji coba nuklir. Titik pecahnya awal suatu gempa disebut hiposenter atau fokusnya. Episentrum adalah titik di permukaan tanah tepat di atas hiposenter.

Aktivitas seismik suatu wilayah adalah frekuensi, jenis, dan ukuran gempa bumi yang dialami dalam kurun waktu tertentu. Kegempaan di suatu lokasi tertentu di bumi adalah laju rata-rata pelepasan energi seismik per satuan volume.

Latar belakang

[sunting | sunting sumber]
Peta lempeng tektonik
Gerakan lempengan tektonik global

Gempa bumi tektonik terjadi dimana saja di muka bumi dimana terdapat simpanan energi regangan elastis yang cukup untuk mendorong perambatan rekahan di sepanjang bidang patahan. Sisi-sisi patahan bergerak melewati satu sama lain dengan mulus dan secara aseismik hanya jika tidak terdapat ketidakteraturan atau ketimpangan di sepanjang permukaan patahan yang meningkatkan tahanan gesek. Sebagian besar permukaan patahan memiliki kekasaran seperti itu, yang mengarah ke bentuk perilaku stick-slip.

Gempa bumi sering menyebabkan banyak korban jiwa, karena letaknya yang dekat dengan daerah berpenduduk padat atau lautan, dimana gempa bumi sering menimbulkan tsunami yang dapat menghancurkan berjarak ribuan kilometer jauhnya. Wilayah-wilayah yang paling berisiko mengalami banyak korban jiwa adalah wilayah-wilayah dimana gempa bumi relatif jarang terjadi namun kuat, dan wilayah-wilayah miskin dengan aturan bangunan seismik yang lemah, tidak ditegakkan, atau tidak ada sama sekali.

Jenis Gempa bumi

[sunting | sunting sumber]

Gempa bumi Tektonik

[sunting | sunting sumber]
Konvergensi samudera-benua yang mengakibatkan proses subduksi dan busur vulkanik menggambarkan salah satu dampak gempa bumi tektonik dari kedua lempeng tektonik.

Gempa bumi tektonik terjadi di mana saja di bumi di tempat yang terdapat energi tekanan elastis yang terakumulasi dengan cukup untuk mendorong perambatan fraktur di sepanjang bidang patahan. Permukaan bumi terdiri dari lempeng-lempeng yang berdekatan antara satu dengan yang lain. Lempeng-lempeng ini selalu mengalami pergerakan yang per tahunnya bisa mencapai 10 cm.[2] Sisi-sisinya hanya dapat bergerak saling melewati satu sama lain secara mulus dan tanpa disertai getaran (aseismik) jika tidak adanya ketidakteraturan atau asperitas di sepanjang permukaan patahan yang meningkatkan hambatan gesekan. Sebagian besar permukaan lempeng memiliki asperitas, yang menyebabkan bentuk perilaku pergesekan yang rapat. Saat patahan terkunci, gerakan relatif yang terus berlangsung di antara lempeng-lempeng akan meningkatkan tekanan dan, oleh karenanya, menyebabkan terakumulasinya energi tegangan di dalam volume di sekitar permukaan patahan. Hal ini terus berlanjut hingga tegangan antara dua atau lebih lempeng yang terjadi mencapai tingkat yang cukup untuk membobol asperitas, yang kemudian menyebabkan terjadinya pergeseran mendadak pada bagian patahan yang terkunci dan melepaskan energi yang terakumulasi.[3]

Gempa bumi sesar aktif

[sunting | sunting sumber]
Sebuah diagram memperlihatkan episenter fokus gempa bumi

Ada tiga jenis sesar utama, yang dapat menyebabkan gempa bumi antar lempeng yaitu: sesar jenis normal, sesar naik (dorongan), dan sesar strike-slip. Sesar normal dan sesar terbalik merupakan contoh dari dip-slip, dimana perpindahan sepanjang sesar searah dengan arah kemiringan dan pergerakan pada patahan tersebut melibatkan komponen vertikal.

Panjang maksimum patahan yang dipetakan (dapat pecah dalam satu waktu) adalah sekitar 1.000 km (620 mil). Contohnya adalah gempa bumi di Alaska (1957), Chile (1960), dan Sumatra (2004), semuanya berada di zona subduksi. Gempa bumi terpanjang yang terjadi pada patahan strike-slip, seperti Patahan San Andreas (1857, 1906), Patahan Anatolia Utara di Turki (1939), dan Patahan Semangko di Sumatra (1926), panjangnya sekitar setengah hingga sepertiga panjang sepanjang batas lempeng subduksi, dan panjang sepanjang patahan normal bahkan lebih pendek.

Jenis Sesar

[sunting | sunting sumber]
Tiga jenis patahan
A. Patahan strike-slip (mendatar) terjadi ketika satuan batuan meluncur melewati satu sama lain.
B. Patahan normal (terbalik) ketika batuan mengalami pemanjangan horizontal.
C. Patahan thrust (naik) terjadi ketika batuan mengalami pemendekan horizontal.

Sesar normal

[sunting | sunting sumber]

Sesar normal terjadi terutama di daerah yang keraknya memanjang seperti batas divergen. Gempa bumi yang terkait dengan sesar normal umumnya berkekuatan kurang dari magnitudo 7. Besaran maksimum di sepanjang sesar normal bahkan lebih terbatas karena banyak di antaranya berlokasi di sepanjang pusat penyebaran.

Sesar naik

[sunting | sunting sumber]
Sesar Baribis. Sesar naik aktif di wilayah Jakarta Selatan

Sesar naik atau terbalik terjadi di daerah yang keraknya memendek seperti pada batas konvergen. Sesar terbalik, terutama yang berada di sepanjang batas konvergen, berhubungan dengan gempa bumi paling kuat (disebut gempa bumi megathrust) termasuk hampir semua gempa berkekuatan magnitudo 8 atau lebih. Gempa bumi megathrust bertanggung jawab atas sekitar 90% total momen seismik yang terjadi di seluruh dunia.

Sesar geser

[sunting | sunting sumber]

Sesar geser atau mendatar adalah struktur curam di mana kedua sisi sesar tergelincir secara horizontal melewati satu sama lain; batas transformasi adalah jenis sesar strike-slip tertentu. Sesar mendatar, khususnya transformasi benua, dapat menghasilkan gempa bumi besar hingga berkekuatan 8. Sesar mendatar cenderung berorientasi vertikal, menghasilkan lebar sekitar 10 km (6,2 mil) di dalam kerak bumi yang rapuh. Dengan demikian, gempa dengan magnitudo jauh lebih besar dari 8 tidak mungkin terjadi.

Sesar Lembang. Sesar geser aktif yang paling terkenal di Kabupaten Bandung

Selain itu, terdapat hierarki tingkat tegangan pada ketiga jenis gangguan. Sesar dorong dihasilkan oleh sesar tertinggi, sesar geser oleh sesar menengah, dan sesar normal oleh tingkat tegangan terendah. Hal ini dapat dengan mudah dipahami dengan mempertimbangkan arah tegangan utama terbesar, yaitu arah gaya yang “mendorong” massa batuan pada saat terjadi patahan. Pada sesar normal, massa batuan terdorong ke bawah dalam arah vertikal, sehingga gaya dorong (tegangan utama terbesar) sama dengan berat massa batuan itu sendiri.

Energi yang dilepaskan

[sunting | sunting sumber]
Kehancuran pada Bandara Sendai, setelah Gempa bumi dan tsunami Tōhoku 2011

Untuk setiap peningkatan satuan besarnya, terdapat peningkatan sekitar tiga puluh kali lipat energi yang dilepaskan. Misalnya saja, gempa berkekuatan 6,0 dapat melepaskan energi sekitar 32 kali lebih banyak dibandingkan gempa berkekuatan 5,0 skala Richter, dan gempa berkekuatan 7,0 dapat melepaskan energi 1.000 kali lebih banyak dibandingkan gempa berkekuatan 5,0 magnitudo. Gempa berkekuatan 8,6 magnitudo dapat melepaskan energi yang sama dengan 10.000 bom atom seukuran yang digunakan pada Perang Dunia II.[4]

Hal ini terjadi karena energi yang dilepaskan saat gempa bumi, dan besarnya gempa, sebanding dengan luas patahan yang pecah dan penurunan tegangan. Oleh karena itu, semakin panjang dan lebar area patahan, maka besaran yang dihasilkan akan semakin besar. Namun, parameter terpenting yang mengendalikan magnitudo gempa maksimum pada suatu patahan bukanlah panjang maksimum yang tersedia, namun lebar tersedia karena lebar tersedia bervariasi sebesar 20 kali lipat. Sepanjang batas lempeng konvergen, sudut kemiringan bidang patahan sangat besar. dangkal, biasanya sekitar 10 derajat. Oleh karena itu, lebar bidang di bagian atas kerak bumi yang rapuh bisa mencapai 50–100 km (31–62 mil) (seperti di Jepang, 2011), atau (Alaska, 1964), yang memungkinkan terjadinya gempa bumi terkuat.

Kedalaman gempa bumi

[sunting | sunting sumber]
Kerusakan pada gedung setelah Gempa bumi Sulawesi Barat 2021, dengan kedalaman dangkal 10 km (6,2 mi)

Mayoritas gempa bumi tektonik berasal dari Cincin Api Pasifik dengan kedalaman tidak melebihi puluhan kilometer. Gempa bumi yang terjadi pada kedalaman kurang dari 70 km (43 mil) diklasifikasikan sebagai gempa bumi "fokus dangkal", sedangkan gempa bumi dengan kedalaman fokus antara 70 dan 300 km (43 dan 186 mil) biasanya disebut "fokus sedang" atau gempa bumi dengan kedalaman menengah. Di zona subduksi, di mana kerak samudera yang lebih tua dan lebih dingin turun ke bawah lempeng tektonik lain, gempa bumi dengan fokus dalam dapat terjadi pada kedalaman yang jauh lebih besar (berkisar antara 300 hingga 700 km (190 hingga 430 mil).

Kedalaman gempa bumi:

  • 0–70 km (0–43 mi) - Gempa bumi "fokus dangkal"
  • 70–300 km (43–186 mi) - Gempa bumi "fokus menengah"
  • 300–700 km (190–430 mi) - Gempa bumi "fokus dalam"

Daerah subduksi yang aktif secara seismik ini dikenal sebagai zona Wadati–Benioff. Gempa bumi fokus dalam terjadi pada kedalaman di mana litosfer yang tersubduksi seharusnya tidak lagi rapuh karena suhu dan tekanan yang tinggi. Kemungkinan mekanisme terjadinya gempa dengan fokus dalam adalah patahan yang disebabkan oleh olivin yang mengalami transisi fase menjadi struktur spinel.

Gempa vulkanik

[sunting | sunting sumber]

Gempa bumi sering terjadi di daerah letusan vulkanik dan disebabkan oleh patahan tektonik maupun pergerakan magma di gunung berapi. Gempa bumi semacam itu dapat menjadi peringatan dini akan terjadinya letusan gunung berapi, seperti yang terjadi pada letusan Gunung St. Helens 1980. Retentetan gempa dapat menjadi penanda lokasi aliran magma di seluruh gunung berapi. Kawanan ini dapat direkam oleh seismometer dan tiltmeter (alat yang mengukur kemiringan tanah) dan digunakan sebagai sensor untuk memprediksi letusan yang akan terjadi atau yang akan datang.

Struktur dinamika

[sunting | sunting sumber]

Gempa tektonik dimulai sebagai area slip awal pada permukaan patahan yang menjadi fokus. Setelah retakan dimulai, retakan tersebut mulai menyebar menjauhi fokus, menyebar di sepanjang permukaan patahan. Perambatan lateral akan terus berlanjut hingga retakan mencapai suatu penghalang, seperti ujung segmen sesar, atau suatu wilayah pada sesar yang tidak mempunyai tekanan yang cukup untuk memungkinkan terjadinya keruntuhan lanjutan. Untuk gempa bumi yang lebih besar, kedalaman keruntuhan akan dibatasi ke bawah oleh zona transisi getas-daktil dan ke atas oleh permukaan tanah. Mekanisme proses ini kurang dipahami karena sulit untuk menciptakan kembali pergerakan cepat seperti itu di laboratorium atau merekam gelombang seismik di dekat zona nukleasi akibat gerakan tanah yang kuat.

Dalam kebanyakan kasus, kecepatan pecahnya mendekati, namun tidak melebihi, kecepatan gelombang geser (gelombang S) batuan di sekitarnya.

Gempa bumi Supershear

[sunting | sunting sumber]
Gempa bumi Turki–Suriah 2023 dengan kecepatan supershear, membunuh sekitar 60.000 jiwa

Dalam seismologi, gempa bumi supershear adalah gempa yang terjadi di sepanjang permukaan patahan dengan melebihi kecepatan gelombang geser seismik (gelombang S). Hal ini menyebabkan efek yang mirip dengan ledakan sonik.[5]

Beberapa peristiwa gempa bumi supershear:

Diketahui bahwa gempa pecah supershear merambat dengan kecepatan lebih besar dari kecepatan gelombang S. Sejauh ini semua hal ini telah diamati selama peristiwa-peristiwa strike-slip yang besar.

Gempa bumi lambat

[sunting | sunting sumber]
Pemandangan Pantai Pangandaran setelah Gempa bumi dan tsunami Jawa 2006

Pecahan gempa bumi yang lambat terjadi dengan kecepatan yang luar biasa rendah. Salah satu bentuk gempa bumi lambat yang sangat berbahaya adalah gempa tsunami, ketika intensitas gempa yang dirasakan relatif rendah, dan disebabkan oleh kecepatan rambat yang lambat dari beberapa gempa bumi besar.

Gempa jenis ini tidak memberikan peringatan kepada penduduk di sekitar pantai, karena intensitasnya yang sangat rendah, seperti pada peristiwa Gempa bumi dan tsunami Jawa 2006 dan Gempa bumi dan tsunami Jawa Timur 1994, dimana penduduk hampir tidak merasakan guncangan gempa, dan ratusan orang tewas akibat tsunami setelahnya.[6]

Gempa bumi intralempeng

[sunting | sunting sumber]

Gempa bumi Intralempeng atau disebut gempa bumi Intraslab mengacu pada gempa bumi yang terjadi diluar perbatasan lempeng tektonik; gempa ini sangat berbeda dengan gempa tektonik biasa dengan kedalaman dangkal, yang terjadi di batas dari lempeng tektonik.

Gempa bumi Sumatra Barat 2009 salah satu contoh gempa bumi intralempeng, dengan kedalaman 90 km (56 mi)

Banyak kota yang menghadapi risiko seismik berupa gempa bumi intralempeng besar yang jarang terjadi. Penyebab gempa bumi ini seringkali tidak diketahui secara pasti. Dalam banyak kasus, kesalahan penyebab terkubur dalam-dalam dan terkadang bahkan tidak dapat ditemukan. Beberapa penelitian menunjukkan bahwa gempa dapat disebabkan oleh pergerakan cairan ke atas kerak bumi di sepanjang zona patahan kuno. Dalam keadaan seperti ini, sulit untuk memperkirakan bahaya seismik suatu kota, terutama jika hanya terjadi satu gempa bumi dalam sejarah. Beberapa kemajuan sedang dicapai dalam memahami mekanisme patahan yang menyebabkan gempa bumi ini.[7][8]

Gempa awal

[sunting | sunting sumber]
Peta menampilkan gempa awal berkekuatan M6.1 sebelum gempa utama datang berkekuatan M7.5 pada Gempa bumi dan tsunami Sulawesi 2018

Gempa awal adalah guncangan gempa bumi pendahuluan yang terjadi sebelum gempa jauh yang lebih besar datang – dan disebut gempa utama – dan berkaitan dengannya dalam ruang dan waktu. Penetapan suatu gempa bumi sebagai gempa pendahuluan, gempa utama, atau gempa susulan hanya dapat dilakukan setelah rangkaian peristiwa yang lengkap telah terjadi.[9]

Aktivitas gempa awal telah terdeteksi pada sekitar 40% dari seluruh gempa bumi sedang hingga besar, dan sekitar 70% pada kejadian M>7.0. Guncangan ini terjadi dalam hitungan menit hingga hari atau bahkan lebih lama sebelum guncangan utama; misalnya, Gempa bumi Sumatra 2002 dianggap sebagai gempa pendahuluan dari Gempa bumi Samudera Hindia 2004 dengan jeda waktu lebih dari dua tahun sebelum peristiwa tersebut terjadi.[6]

Namun beberapa gempa besar (M>8.0) tidak menunjukkan aktivitas gempa pendahuluan sama sekali, seperti pada peristiwa Gempa bumi Biak 1996 - M8.1.

Peningkatan aktivitas gempa pendahuluan sulit diukur untuk masing-masing gempa bumi, namun akan terlihat ketika menggabungkan hasil dari berbagai peristiwa yang berbeda. Dari observasi gabungan tersebut, peningkatan sebelum guncangan utama diamati bertipe hukum kekuatan terbalik. Hal ini mungkin menunjukkan bahwa gempa pendahuluan menyebabkan perubahan tegangan yang mengakibatkan guncangan utama atau bahwa peningkatan tersebut terkait dengan peningkatan tegangan secara umum di wilayah tersebut.[10]

Gempa susulan

[sunting | sunting sumber]

Gempa susulan adalah gempa yang terjadi setelah gempa sebelumnya, yaitu gempa utama. Perubahan tekanan antar batuan yang cepat, dan tekanan dari gempa bumi asli merupakan penyebab utama terjadinya gempa susulan ini, bersamaan dengan pecahnya lapisan kerak bumi di sekitar bidang patahan saat menyesuaikan dengan efek gempa utama.[11]

Peta gempa utama dan susulan pada Gempa bumi Lombok Agustus 2018

Gempa susulan terjadi di wilayah yang sama dengan gempa utama namun selalu berkekuatan lebih kecil, namun gempa tersebut masih cukup kuat untuk menyebabkan kerusakan yang lebih besar pada bangunan yang sebelumnya telah rusak akibat gempa utama. Jika gempa susulan lebih besar dari gempa utama, maka gempa susulan tersebut ditetapkan kembali sebagai gempa utama dan guncangan utama semula ditetapkan kembali sebagai gempa pendahuluan. Gempa susulan terbentuk saat kerak di sekitar bidang patahan yang tergeser menyesuaikan diri dengan efek gempa utama.

Gempa bumi swarm

[sunting | sunting sumber]

Gempa bumi swarm adalah kawanan gempa yang terjadi di suatu wilayah tertentu dalam waktu singkat dengan skala yang relatif sama. Gempa bumi ini berbeda dengan gempa bumi yang diikuti oleh serangkaian gempa susulan karena tidak ada guncangan utama, sehingga tidak ada gempa yang berkekuatan lebih besar dari gempa lainnya.

Contoh gempa bumi swarm terjadi pada Kabupaten Sumedang dengan kekuatan 4,5, 4,8 dan 4,2 pada Desember 2023 dan Januari 2024.[12]

Seismik Gap

[sunting | sunting sumber]
Peta Sunda Megathurst di selatan Jawa. Zona ini belum pernah mengalami gempa bumi besar >M8.0 dalam 200 tahun terakhir

Seismik Gap atau Celah seismik adalah segmen patahan aktif yang tidak menghasilkan gempa bumi kuat dalam jangka waktu yang sangat lama, dibandingkan dengan segmen lain di sepanjang zona patahan yang sama.[13]

Terdapat hipotesis atau teori yang menyatakan bahwa dalam jangka waktu yang lama, perpindahan pada setiap segmen harus sama dengan yang dialami seluruh bagian sesar lainnya. Oleh karena itu, setiap celah yang besar dan berkepanjangan dianggap sebagai segmen patahan yang paling mungkin mengalami gempa bumi di masa depan.[14]

Di Selat Sunda merupakan zona "Seismic Gap" yaitu zona kekosongan gempa besar selama ratusan tahun dan berada di antara 2 gempa besar yang merusak dan memicu tsunami yaitu Gempa bumi Jawa M7,7 (2006) dan Gempa bumi Bengkulu M8,4 (2007).[15]

Intensitas dan kekuatan

[sunting | sunting sumber]

Skala instrumental yang digunakan untuk menggambarkan besarnya gempa dimulai dengan Skala Richter pada tahun 1930an. Ini adalah pengukuran amplitudo suatu peristiwa yang relatif sederhana, dan penggunaannya menjadi minimal di abad ke-21. Skala gempa yang digunakan saat ini untuk otoritas Seismologi adalah Skala magnitudo momen untuk menggantikan Skala Richter yang dianggap tidak akurat saat ini.

Peta menampilkan guncangan intensitas Gempa bumi Cianjur 2022 dengan skala MMI IX (Hebat) pada skala intensitas Mercalli

Gelombang seismik merambat melalui bagian dalam bumi dan dapat direkam oleh seismometer pada jarak yang sangat jauh. Besaran gelombang permukaan dikembangkan pada tahun 1950an sebagai alat untuk mengukur gempa bumi jarak jauh dan meningkatkan akurasi gempa bumi yang lebih besar. Skala magnitudo momen tidak hanya mengukur amplitudo guncangan tetapi juga memperhitungkan momen seismik (total luas keruntuhan, rata-rata slip sesar, dan kekakuan batuan). Skala intensitas Mercalli yang dimodifikasi didasarkan pada efek yang diamati dan terkait dengan intensitas guncangan.[16]

Frekuensi gempa bumi

[sunting | sunting sumber]
Gempa bumi dan tsunami di Messina, Italia memakan hingga 120,000 korban jiwa, salah satu bencana terburuk dalam sejarah Eropa.

Diperkirakan sekitar 500.000 gempa bumi terjadi setiap tahunnya, dan dapat dideteksi dengan instrumentasi saat ini. Sekitar 100.000 gempa bumi di antaranya dapat dirasakan. Gempa bumi kecil hampir terus-menerus terjadi di seluruh wilayah didunia seperti di California dan Alaska, serta di El Salvador, Meksiko, Guatemala, Chili, Peru, Indonesia, Filipina, Iran, Pakistan, Kepualauan Azores di Portugal, Turki, Selandia Baru, Yunani, Italia, India, Nepal, dan Jepang.[17][18]

Gempa bumi berkekuatan besar jarang terjadi dan hubungannya bersifat eksponensial; misalnya, gempa bumi yang lebih besar dari magnitudo 4 terjadi sepuluh kali lebih banyak dibandingkan gempa yang lebih besar dari magnitudo 5. Di Britania Raya (wilayah seismik terendah di Eropa), telah dihitung bahwa rata-rata kejadiannya adalah: gempa bumi berkekuatan 3,7–4,6 setiap tahun, gempa bumi berkekuatan 4,7–5,5 setiap 10 tahun, dan gempa bumi berkekuatan 5,6 atau lebih besar setiap 100 tahun.[19]

Jumlah stasiun seismik telah meningkat dari sekitar 350 pada tahun 1931 menjadi ribuan saat ini. Akibatnya, lebih banyak gempa bumi yang dilaporkan dibandingkan di masa lalu, namun hal ini disebabkan oleh kemajuan pesat dalam instrumentasi, dibandingkan peningkatan jumlah gempa bumi. Survei Geologi Amerika Serikat (USGS) memperkirakan bahwa, sejak tahun 1900, telah terjadi rata-rata 18 gempa bumi besar (berkekuatan 7,0–7,9) dan satu gempa besar (berkekuatan 8,0 atau lebih besar) per tahun, dan rata-rata ini relatif stabil.

Cincin Api Pasifik. Zona seismik dan letusan gunung berapi terbesar didunia
Zona Sabuk alpida. Zona seismik paling aktif kedua didunia

Sebagian besar gempa bumi di dunia 90%, terjadi di zona sepanjang 40.000 kilometer (25.000 mil), yang dikenal sebagai Cincin Api Pasifik. Sekitar 90% dari gempa bumi yang terjadi dan 81% dari gempa bumi terbesar terjadi di sepanjang Cincin Api ini.

Gempa besar juga cenderung terjadi di sepanjang batas lempeng lainnya, seperti di sepanjang Pegunungan Himalaya yang dikenal sebagai Zona sabuk alpida, zona seisimik paling aktif kedua setelah Cincin api di Pasifik.[20] Zona seismik Sabuk alpida mempunyai reputasi sebagai pembunuh. Meskipun hanya sekitar 17% gempa bumi besar di dunia terjadi di sabuk seismik Alpida, sebagian besar korban jiwa akibat gempa bumi sepanjang sejarah terjadi di zona ini. Hal ini terutama disebabkan oleh konstruksi yang lemah dan banyaknya jumlah penduduk di wilayah tersebut. Beberapa gempa bumi mematikan di daerah ini termasuk Gempa bumi Asia Selatan 2005 yang membunuh sekitar 87.000 jiwa, lalu Gempa bumi Bam 2003 di Tenggara Iran menewaskan sekitar 34.000 orang, dan gempa bumi baru baru ini yaitu Gempa bumi Turki–Suriah 2023 membunuh sekitar 50.000 jiwa.[21]

Tokyo menjadi kota paling rawan gempa di dunia. Para ahli mengatakan, ada kemungkinan 70 persen gempa besar berkekuatan 7.0 melanda wilayah selatan Tokyo dalam 30 tahun ke depan.

Kota-kota besar seperti Mexico City, Tokyo, Jakarta, Manila, Los Angeles, San Francisco, Roma, Istanbul, Bucharest, Delhi dan Teheran memiliki resiko gempa bumi yang sangat tinggi, dengan kerusakan dan jumlah korban yang tak terbatas. Beberapa seismolog memperingatkan bahwa satu gempa bumi saja dapat merenggut nyawa sekitar tiga juta orang, meskipun peristiwa semacam itu belum pernah terjadi dalam catatan sejarah.[22][23]

Dampak gempa bumi

[sunting | sunting sumber]

Guncangan dan pergerakan tanah

[sunting | sunting sumber]
Struktur bangunan delapan lantai yang fondasinya hancur, setelah diguncang Gempa bumi Kota Meksiko 1985
Animasi perbandingan guncangan gempa antara Gempa bumi Kota Meksiko 1985 dan Gempa bumi Puebla 2017

Guncangan tanah adalah dampak utama yang ditimbulkan oleh gempa bumi. Tingkat keparahan dampak lokal bergantung pada kombinasi kompleks besaran gempa, jarak dari pusat gempa, serta kondisi geologi dan geomorfologi setempat, yang dapat memperkuat atau mengurangi perambatan gelombang. Guncangan tanah diukur dengan percepatan tanah puncak.

Efek ini disebut amplifikasi. Hal ini terutama disebabkan oleh perpindahan gerakan seismik dari tanah dalam yang keras ke tanah dangkal yang lunak dan efek fokus energi seismik yang disebabkan oleh susunan geometris khas dari endapan tersebut.

Guncangan tanah adalah risiko berbahaya bagi struktur teknik bangunan besar seperti bendungan, jembatan, dan pembangkit listrik tenaga nuklir yang dapat merusak struktur tersebut.

Pencairan tanah

[sunting | sunting sumber]
Dampak Pencairan tanah di Balaroa, Palu, setelah Gempa bumi dan tsunami Sulawesi 2018

Pencairan tanah atau Likeufaksi terjadi ketika, karena goncangan, material butiran jenuh air (seperti pasir) untuk sementara kehilangan kekuatannya dan berubah dari padat menjadi cair. Likuifaksi tanah dapat menyebabkan struktur kaku, seperti bangunan dan jembatan, miring atau tenggelam ke dalam endapan cair. Misalnya, pada Gempa bumi Alaska tahun 1964, pencairan tanah menyebabkan banyak bangunan tenggelam ke dalam tanah, dan akhirnya runtuh dengan sendirinya.[24]

Tanah Longsor

[sunting | sunting sumber]
Tanah longsor akibat Gempa bumi El Salvador 2001

Gempa bumi seringkali memicu terjadinya tanah longsor, sehingga menyebabkan kerusakan parah dan bahkan bencana pada rumah-rumah. Jika rumah Anda berada di jalur longsor akibat gempa, maka bangunan disek8 berisiko mengalami kerusakan akibat puing-puing tanah longsor, serta tergelincir ke bawah bukit.

Setiap jenis tanah longsor yang disebabkan oleh gempa bumi terjadi pada lingkungan geologi tertentu. Mulai dari lereng yang menjorok dari batuan yang terindurasi dengan baik hingga lereng dengan kemiringan kurang dari 1° yang didasari oleh sedimen lunak dan tidak terkonsolidasi. Material yang paling rentan terhadap tanah longsor akibat gempa bumi meliputi batuan dengan sementasi lemah, batuan dengan indurasi lebih tinggi dengan diskontinuitas yang menonjol atau pervasif, pasir sisa dan koluvial, tanah vulkanik yang mengandung lempung sensitif, tanah loess, tanah tersementasi, alluvium granular, endapan delta granular, dan man-granular. dibuat terisi.

Kebakaran

[sunting | sunting sumber]
Kebakaran saat Gempa bumi San Francisco 1906.

Gempa bumi juga dapat menyebabkan kebakaran dengan merusak saluran listrik atau saluran pipa gas. Misalnya, pada Gempa bumi San Francisco 1906 lebih banyak korban jiwa yang disebabkan oleh api daripada gempa itu sendiri.[25]

Tsunami saat Gempa bumi di Samudra Hindia.

Tsunami adalah gelombang laut dengan panjang gelombang dan periode panjang yang dihasilkan oleh pergerakan air dalam jumlah besar secara tiba-tiba atau tiba-tiba—termasuk saat terjadi gempa bumi di bawah laut. Di lautan terbuka, jarak antara puncak gelombang dapat melebihi 100 kilometer (62 mil), dan periode gelombang dapat bervariasi dari lima menit hingga satu jam. Tsunami semacam itu bergerak dengan kecepatan 600–800 kilometer per jam (373–497 mil per jam), bergantung pada kedalaman air. Gelombang besar yang dihasilkan oleh gempa bumi atau tanah longsor bawah laut dapat menyerbu daerah pesisir terdekat dalam hitungan menit. Tsunami juga dapat menempuh jarak ribuan kilometer melintasi lautan terbuka dan mendatangkan kehancuran di pantai seberang beberapa jam setelah gempa bumi yang menimbulkannya.

Biasanya, gempa subduksi di bawah magnitudo 7,5 tidak menyebabkan tsunami, meskipun beberapa kejadiannya telah tercatat. Sebagian besar tsunami yang merusak disebabkan oleh gempa bumi berkekuatan 7,5 atau lebih.

Banjir mungkin efek sekunder dari gempa bumi jika bendungan rusak. Gempa bumi dapat menyebabkan tanah longsor membendung sungai, runtuh dan menyebabkan banjir.

Dampak pada Manusia

[sunting | sunting sumber]
Korban terluka di Sewon, Bantul akibat Gempa bumi Yogyakarta 2006

Dampak fisik akibat gempa bumi termasuk: Cedera dan kehilangan nyawa.[26]

Selain itu, masyarakat yang terkena dampak gempa cenderung terpengaruh secara psikologis, seperti gangguan mental dan perilaku yang secara langsung menimbulkan rasa takut atau menyebabkan gangguan stres pascatrauma (PTSD). Dilaporkan bahwa antara 10 dan 40% para penyintas bencana gempa bumi mengalami depresi, dan sulit tidur karena gangguan kecemasan.

Para penyintas gempa mengalami dampak kecemasan, adalah sesuatu yang wajar saat mengalami gempa pertama, apalagi gempa besar.

Diketahui bahwa gejala PTSD, depresi, dan kecemasan merupakan gangguan mental yang banyak terjadi pada remaja Indonesia pasca gempa.

Orang-orang dapat mengalami pusing, kecemasan, dan bahkan "gempa susulan hantu”. Gempa bumi selalu menakutkan, namun bagi sebagian orang, gempa susulan dapat terjadi lebih dari sekedar gempa yang sebenarnya: Orang dapat mengalami kecemasan, masalah tidur, dan masalah kesehatan lainnya dalam hitungan jam atau hari setelah gempa.[27]

Prediksi gempa bumi

[sunting | sunting sumber]
Sebuah Seismometer alat pengukur skala gempa bumi

Prediksi gempa bumi adalah cabang ilmu seismologi yang berkaitan dengan spesifikasi waktu, lokasi, dan berapa besarnya gempa bumi di masa depan. Banyak metode yang telah dikembangkan untuk memprediksi kapan gempa bumi akan terjadi, dalam waktu, dan tempat yang ditentukan. Meskipun banyak upaya yang dilakukan, hingga saat ini gempa bumi belum dapat diprediksi pada hari atau bulan tertentu.

Pada tahun 1970-an, para ilmuwan optimis bahwa metode untuk memprediksi gempa bumi akan segera ditemukan, tetapi pada tahun 1990-an kegagalan terus berlanjut, dan membuat banyak pihak mempertanyakan apakah hal semacam itu bisa dilakukan. Sebagian besar ilmuwan pesimis dan berpendapat bahwa, memprediksi gempa bumi pada dasarnya adalah hal mustahil untuk dilakukan.

Gempa bumi Haicheng 1975 diklaim satu satunya yang berhasil diprediksi oleh seismologi, sehingga angka korban jiwa berhasil ditekan, sebagian besar kota telah dievakuasi sebelum gempa, dan hanya sedikit korban yang meninggal akibat runtuhnya bangunan.[28]

Metode prediksi gempa

[sunting | sunting sumber]

Metode prediksi hewan

[sunting | sunting sumber]

Beberapa peneliti percaya, bahwa perilaku hewan dapat memprediksi gempa bumi.[29] Gempa bumi terjadi, akibat dari (Gelombang-P) merambat dua kali lebih cepat dibandingkan gelombang geser yang lebih merusak (Gelombang-S). Gelombang tersebut tidak dapat dirasakan oleh manusia, namun hewan menyadari getaran kecil yang muncul beberapa puluh detik sebelum guncangan besar datang, hewan tersebut menjadi waspada atau menunjukkan perilaku tidak biasa lainnya.[30]

Sebuah studi ilmiah pada tahun 2018 yang mencakup lebih dari 130 spesies hewan, tidak menemukan cukup bukti untuk menunjukkan bahwa hewan dapat memberikan peringatan gempa bumi beberapa jam, hari, atau minggu sebelumnya. Statistik lain menunjukkan bahwa beberapa laporan perilaku hewan yang tidak biasa disebabkan oleh gempa bumi yang lebih kecil (gempa awal) yang terkadang didahului oleh gempa besar. Gempa kecil tersebut tidak dapat dirasakan oleh manusia, tapi dapat dirasakan oleh hewan. Namun, beberapa perilaku hewan mungkin bisa secara keliru dikaitkan dengan gempa bumi yang akan terjadi dalam waktu dekat.

Banyak peneliti yang menyelidiki perilaku hewan terhadap gempa bumi berada di Tiongkok dan Jepang.[31] Sebagian besar observasi ilmiah berasal dari gempa bumi Canterbury 2010 di Selandia Baru, gempa bumi Nagano 1984 di Jepang, dan gempa bumi L'Aquila 2009 di Italia.

Hewan yang dikenal bersifat magnetoreseptif mungkin dapat mendeteksi gelombang elektromagnetik dalam rentang frekuensi sangat rendah yang mencapai permukaan bumi sebelum gempa bumi, sehingga menyebabkan perilaku aneh. Gelombang elektromagnetik ini juga dapat menyebabkan ionisasi udara, oksidasi air, dan kemungkinan keracunan air yang dapat dideteksi oleh hewan lain.[32]

Sebelum gempa bumi L'Aquila 2009 di Italia, sejumlah katak menunjukkan perilaku yang tidak biasa, katak-katak tersebut menghilang dari kolam-kolam setempat, tiga hari sebelum gempa tersebut datang.[33] Mereka juga melaporkan bahwa banyak tikus-tikus yang berlarian disepanjang jalan kota, tidak hanya itu, beberapa hewan lain, seperti ikan, kuda, anjing, dan hewan mamalia lainnya berperilaku aneh.[34]

Metode emisi radon

[sunting | sunting sumber]

Kebanyakan batuan mengandung sejumlah kecil gas yang secara isotop dapat dibedakan dari gas atmosfer normal.[35] Ada laporan mengenai lonjakan konsentrasi gas-gas tersebut sebelum terjadinya gempa bumi besar; hal ini disebabkan pelepasan akibat tekanan pra-seismik atau rekahan batuan. Salah satu gas tersebut adalah radon, yang dihasilkan oleh peluruhan radioaktif dari sejumlah kecil uranium yang ada di sebagian besar batuan.[36]

Radon berpotensi berguna sebagai alat prediksi gempa bumi, karena bersifat radioaktif sehingga mudah dideteksi, dan waktu paruhnya yang pendek (3,8 hari) membuat kadar radon sensitif terhadap fluktuasi jangka pendek.[37]

Metode pengamatan satelit terhadap penurunan suhu tanah

[sunting | sunting sumber]
Rekaman satelit dari NASA pada tanggal 6, 21 dan 28 Januari 2001 di wilayah Gujarat, India. Yang ditandai dengan tanda bintang adalah episentrum gempa bumi Gujarat pada 26 Januari berkekuatan 7,9. Rekaman mengungkapkan anomali termal pada 21 Januari yang ditunjukkan dengan warna merah. Pada rekaman berikutnya, 2 hari setelah gempa, anomali termal tersebut hilang.

Salah satu cara untuk mendeteksi tekanan gempa bumi tektonik adalah dengan mendeteksi peningkatan suhu lokal pada permukaan kerak bumi yang diukur dengan satelit. Selama proses evaluasi, latar belakang variasi harian dan kebisingan akibat gangguan atmosfer dan aktivitas manusia dihilangkan sebelum memvisualisasikan konsentrasi tren di area patahan yang lebih luas. Metode ini telah diterapkan secara eksperimental sejak tahun 1995.[38]

Dalam fenomena ini, Friedmann Freund dari NASA telah mengusulkan bahwa radiasi inframerah yang ditangkap oleh satelit bukan disebabkan oleh peningkatan nyata pada suhu permukaan kerak bumi.[39] Menurut versi ini, emisi tersebut merupakan hasil eksitasi kuantum yang terjadi pada ikatan ulang kimiawi pembawa muatan positif (lubang) yang bergerak dari lapisan terdalam ke permukaan kerak bumi dengan kecepatan 200 meter per detik. Muatan listrik tersebut timbul akibat meningkatnya tekanan tektonik seiring dengan mendekatnya waktu gempa. Emisi ini meluas hingga 500 x 500 kilometer persegi untuk kejadian yang sangat besar dan berhenti segera setelah gempa bumi.[40]

Sistem peringatan gempa

[sunting | sunting sumber]
- Negara yang memiliki sistem peringatan dini gempa bumi (warna merah)
- Negara yang dalam masa pengembangan peringatan dini gempa bumi (warna kuning)

Pada tahun 2023, Tiongkok, Jepang, Taiwan, Korea Selatan, dan Meksiko memiliki sistem peringatan dini gempa bumi nasional yang akurat dan komprehensif.

SASMEX Sistem peringatan dini gempa bumi di Mexico City

Negara yang mempunyai penerapan sistem peringatan dini gempa bumi, termasuk Meksiko (Sistem Peringatan Seismik Meksiko) atau disebut SASMEX. Sistem peringatan ini memberikan peringatan gempa bumi hingga 60 detik ke Mexico City, Acapulco, Kota Puebla, Oaxaca, Guadalajara, Colima dan Toluca. SASMEX dibuat setelah peristiwa mematikan Gempa bumi Kota Meksiko 1985, dalam rangka langkah-langkah kesiapsiagaan darurat.

Jaringan sensor SASMEX yang melayani Kota Meksiko telah dianggap sebagai sistem peringatan dini gempa pertama yang mengeluarkan peringatan dan tersedia untuk masyarakat umum.[41]

Amerika Serikat

[sunting | sunting sumber]
ShakeAlert di California

Di Amerika Serikat. Sistem pra-deteksi gempa bumi otomatis paling awal dipasang pada tahun 1990an; misalnya, di California, sistem stasiun pemadam kebakaran Calistoga yang secara otomatis memicu sirene seluruh kota untuk memperingatkan seluruh penduduk di wilayah tersebut akan adanya gempa bumi.[42]

Badan Survei Geologi Amerika Serikat (USGS) memulai penelitian dan pengembangan sistem peringatan dini di Pantai Barat Amerika Serikat pada bulan Agustus 2006, dan sistem tersebut mulai dapat dibuktikan pada bulan Agustus 2009. Setelah melalui berbagai fase pengembangan, versi 2.0 diluncurkan pada musim gugur tahun 2018, memungkinkan sistem yang "cukup berfungsi dan teruji" untuk memulai Fase 1 untuk memperingatkan California, Oregon, dan Washington.

ShakeAlert memperingatkan masyarakat mulai tanggal 28 September 2018, pesan-pesan itu sendiri tidak dapat didistribusikan sampai berbagai mitra distribusi swasta dan publik menyelesaikan aplikasi seluler dan melakukan perubahan pada berbagai sistem peringatan darurat. Sistem peringatan pertama yang tersedia untuk umum adalah aplikasi ShakeAlertLA, yang dirilis pada Malam Tahun Baru 2018 (walaupun hanya memperingatkan adanya guncangan di wilayah Los Angeles). Pada 17 Oktober 2019, Cal OES mengumumkan peluncuran sistem distribusi peringatan di seluruh negara bagian di California, menggunakan aplikasi seluler dan sistem Peringatan Darurat Nirkabel (WEA). California menyebut sistem mereka sebagai Sistem Peringatan Dini Gempa California. Sistem ini peringatan diluncurkan di Oregon pada 11 Maret 2021 dan di Washington pada 4 Mei 2021, melengkapi sistem peringatan untuk Pantai Barat.[43]

Mekanisme sistem peringatan dini gempa bumi di Jepang
Sistem Peringatan Gempa (EEW) pada Ponsel di Jepang
Suara dari sistem peringatan (EEW) pada Ponsel

Di Jepang sistem peringatan dini gempa bumi, dibuat oleh Badan Meteorologi Jepang, sistem peringatan tersebut bernama (EEW) Earthquake Early Warning. Sistem ini menggunakan gelombang seismik. Sistem tersebut akan diperingati melalui ponsel seluler, saluran televisi, dan radio. Jepang meluncurkan sistem peringatan dini gempa nasional pertama yang tersedia untuk umum di dunia pada tahun 2007. Sistem ini mendeteksi gelombang yang datang paling awal yang dihasilkan oleh gempa di bawah tanah (Gelombang-P) dan bertujuan untuk mengeluarkan peringatan sebelum gelombang yang lebih lambat dan lebih merusak datang kemudian (Gelombang-S).[44]

Sistem ini dikembangkan untuk meminimalkan kerusakan akibat gempa dan memungkinkan masyarakat untuk berlindung atau mengevakuasi daerah berbahaya sebelum datangnya guncangan yang kuat. Sistem ini digunakan oleh kereta api untuk memperlambat kereta dan oleh pabrik untuk menghentikan jalur perakitan sebelum gempa terjadi.

Efektivitas peringatan tergantung pada posisi penerimanya. Setelah menerima peringatan, seseorang memiliki waktu beberapa detik hingga satu menit atau lebih untuk mengambil tindakan. Daerah dekat pusat gempa mungkin akan mengalami guncangan hebat sebelum peringatan dikeluarkan.[45]

Setelah Gempa bumi dan tsunami Tōhoku 2011, sistem (EEW) dan sistem peringatan tsunami Jepang dianggap efektif. Meskipun tsunami menewaskan lebih dari 20.000 orang, dan diyakini bahwa jumlah korban jiwa akan jauh lebih besar tanpa sistem peringatan (EEW).

Sistem peringatan gempa Tiongkok (EEWS), 150.000 stasiun pemantauan dipasang

Sistem peringatan gempa di Tiongkok dibangun pada tahun 1990an. Kehancuran akibat Gempa bumi Sichuan 2008 mendorong investasi Tiongkok dalam sistem peringatan dini gempa bumi nasional (EEWS). Sejumlah stasiun pemantauan, sensor, dan sistem analitik dipasang untuk meningkatkan akurasi, daya tanggap, dan kelengkapan data gempa. Pada bulan Juni 2019, sistem peringatan gempa nasional (EEWS), berhasil memperingatkan sebuah kota akan terjadinya gempa berkekuatan 6,0 Mw antara 10-27 detik sebelum guncangan tiba.

Pada tahun 2023, (EEWS) nasional telah selesai dibangun, dengan 150.000 stasiun pemantauan, dikelola oleh tiga pusat nasional, 31 pusat provinsi, 173 pusat prefektur dan kota. Sistem peringatan dini gempa Tiongkok adalah jaringan seismik terbesar di dunia.[46]

Indonesia

[sunting | sunting sumber]

Di Indonesia, sistem peringatan dini gempa bumi saat ini dalam masa pengembangan, sistem tersebut bernama (EWAS) Earthquake Early Warning System, sistem pendeteksi guncangan ini difungsikan untuk memberikan tanda peringatan kehadiran gempa bumi kepada masyarakat secara otomatis dan sangat cepat. Sistem ini diharapkan dapat meningkatkan rasa aman sekaligus kewaspadaan masyarakat di daerah-daerah rawan bencana gempa bumi yang makin sering terjadi.

(EWAS) memberi tanda peringatan gempa bumi berupa bunyi sirine yang keras di tengah masyarakat tepat saat guncangan gempa terjadi. EWAS efektif mendeteksi guncangan gempa dan membunyikan alarm peringatan dalam waktu kurang dari 5 detik. Tidak harus menunggu pesan SMS atau whatsapp yang baru mengabarkan gempa 5 menit setelah gempa terjadi.

Ketika alarm EWAS berbunyi, sudah pasti itu akibat gempa, bukan karena truk melintas atau karena adanya perkerjaan renovasi/konstruksi bangunan. Masyarakat tidak perlu ragu, segera bergegas keluar bangunan menuju tempat yang lapang, agar terhindar dari bahaya terkena runtuhan bangunan.

Sistem EWAS dibangun dari sejumlah detektor getaran tanah (node) yang dipasang di suatu lingkungan pemukiman, misalnya suatu desa atau kelurahan; atau gedung apartemen, gedung perkantoran, kawasan industri hingga daerah wisata pantai dan pegunungan serta tempat wisata lainnya yang ramai pengunjungnya. Setiap node saling berkomunikasi melalui gelombang radio. Sehingga jarak antar node tergantung dari jangkauan komunikasi radio antar node. Sejauh ini Sistem EWAS yang sudah terpasang jarak antar nodenya sekitar 200-300 meter.[47]

Sistem Global

[sunting | sunting sumber]

Detektor Gempa

[sunting | sunting sumber]
Logo dari Detektor Gempa dari Francesco Finazzi, kini dapat di install melalui aplikasi Android
Pengguna aplikasi Detektor Gempa "Earthquake Network"

Pada bulan Januari 2013, Francesco Finazzi dari Universitas Bergamo memulai proyek penelitian Jaringan Gempa yang bertujuan untuk mengembangkan dan memelihara sistem peringatan gempa crowdsourced berdasarkan jaringan ponsel pintar. Ponsel pintar digunakan untuk mendeteksi guncangan tanah yang disebabkan oleh gempa bumi dan peringatan dikeluarkan segera setelah gempa terdeteksi. Masyarakat yang tinggal pada jarak yang lebih jauh dari pusat gempa dan titik deteksi mungkin akan diperingatkan sebelum mereka terkena gelombang gempa yang merusak.

Masyarakat dapat mengambil bagian dalam proyek ini dengan menginstal aplikasi Android "Earthquake Network" di ponsel pintar mereka. Aplikasi ini mengharuskan ponsel untuk menerima peringatan.[48][49]

"Earthquake Network" atau "Detektor Gempa" kini dapat di install dalam aplikasi Play Store untuk seluruh pengguna global.

Sistem Peringatan Gempa Android

[sunting | sunting sumber]

Pada 11 Agustus 2020, Google mengumumkan bahwa sistem operasi Android-nya akan mulai menggunakan akselerometer di perangkat untuk mendeteksi gempa bumi (dan mengirimkan datanya ke "peladen pendeteksi gempa" perusahaan). Karena jutaan ponsel beroperasi pada Android, dan menghasilkan jaringan pendeteksi gempa terbesar di dunia.

Data yang dikumpulkan oleh perangkat Android hanya digunakan untuk memberikan informasi cepat mengenai gempa bumi melalui Google Penelusuran, meskipun perangkat tersebut selalu direncanakan untuk mengeluarkan peringatan untuk banyak area lain berdasarkan kemampuan deteksi Google di masa mendatang.

Pada tanggal 28 April 2021, Google mengumumkan peluncuran sistem peringatan ke Yunani dan Selandia Baru, negara pertama yang menerima peringatan berdasarkan kemampuan deteksi Google sendiri. Peringatan Google diperluas ke Turki, Filipina, Kazakhstan, Kyrgyzstan, Tajikistan, Turkmenistan, dan Uzbekistan pada bulan Juni 2021.[50]

Penanggulangan

[sunting | sunting sumber]
Perlengkapan tas siaga gempa di Jepang

Persiapan untuk menghadapi gempa bumi dapat terdiri dari tindakan mitigasi, yang berupaya meminimalisir dampak gempa bumi. Tindakan bertahan hidup yang umum mencakup seperti menyimpan makanan kaleng, senter, alat P3K, dan air untuk keadaan darurat, hingga memberikan panduan kepada masyarakat apa yang harus dilakukan saat gempa terjadi.[51]

Sebuah latihan mitigasi gempa bumi yang diadakan oleh sekolah di Taiwan

Langkah-langkah mitigasi dapat mencakup mengamankan benda yang kuat, dan jauh dari tempat tidur, seperti perabot berukuran besar (contoh rak buku, lemari besar, layar TV dan komputer) yang mungkin terjatuh saat terjadi gempa bumi. Lalu menghindari menyimpan barang di atas tempat tidur atau sofa, dan menghindari tempat tidur berada di atas sebuah jendela, demi menghindari resiko terkena puing-puing pecahan kaca saat gempa terjadi. Lalu menyimpan benda-benda tajam seperti pisau dengan baik di lemari.

Kesiapsiagaan dimulai dari kehidupan sehari-hari seseorang dan melibatkan benda-benda serta pelatihan yang berguna saat terjadi gempa bumi. Kesiapsiagaan berlanjut dalam sebuah kontinum dari kesiapan individu hingga kesiapan anggota keluarga, saat menghadapi bencana gempa bumi.

Latihan mitigasi bencana gempa di Filipina

Beberapa negara dengan resiko bencana gempa bumi tinggi seperti Indonesia.[52] Kesiapsiagaan masyarakat umumnya masih rendah, terutama dalam lingkungan sekolah dan pekerjaan, meskipun ada upaya untuk meningkatkan kesadaran masyarakat.[53]

Banyak berbagai metode untuk meningkatkan kesiapsiagaan bencana, namun metode tersebut jarang terdokumentasi dengan baik dan efektivitasnya jarang diuji. Pelatihan langsung, latihan, dan interaksi tatap muka terbukti lebih berhasil dalam mengubah perilaku.[54]

Struktur tahan gempa

[sunting | sunting sumber]
Isolator anti seismik pada bangunan

Struktur tahan gempa atau struktur aseismik dirancang untuk melindungi bangunan pada tingkat tertentu atau lebih besar dari gempa bumi. Meskipun tidak ada struktur yang sepenuhnya tahan terhadap kerusakan akibat gempa, tujuan dari rekayasa gempa adalah untuk mendirikan struktur yang berfungsi lebih baik selama aktivitas seismik dibandingkan struktur konvensional.

Menurut peraturan bangunan, struktur tahan gempa dimaksudkan untuk menahan gempa bumi terbesar dengan kemungkinan tertentu yang mungkin terjadi di lokasinya. Ini berarti korban jiwa harus diminimalkan dengan mencegah runtuhnya bangunan jika terjadi gempa bumi yang jarang terjadi, sementara hilangnya fungsi harus dibatasi pada gempa yang lebih sering terjadi.

Sebuah Bandul seberat 800 ton pada menara Taipei 101, mampu menahan efek guncangan gempa bumi

Untuk mengurangi kehancuran akibat gempa, satu-satunya metode yang tersedia bagi para arsitek kuno adalah membangun bangunan bersejarah mereka agar tahan lama, sering kali dengan membuatnya terlalu kaku dan kuat.[55]

Bangunan anti seismik di daerah rawan gempa mungkin memiliki persyaratan khusus yang dirancang untuk meningkatkan ketahanan bangunan baru terhadap gempa. Bangunan tua dan rumah yang tidak memenuhi standar dapat dimodifikasi untuk meningkatkan ketahanannya. Modifikasi dan desain tahan gempa juga diterapkan pada jalan layang dan jembatan.

Teknik modifikasi gempa dan peraturan bangunan modern dirancang untuk mencegah kehancuran total bangunan akibat gempa bumi yang tidak lebih besar dari 8,5 Skala Richter.[56]

Rumah tahan gempa tradisional

[sunting | sunting sumber]
Rumah adat Suku Badui yang dikenal tahan terhadap guncangan gempa bumi

Banyaknya gempa yang terjadi di Indonesia sejak zaman dahulu membuat Leluhur kita beradaptasi dan menerapkan sikap tangguh bencana, terutama pada hunian mereka. Hal serupa terjadi hampir di seluruh wilayah Indonesia sehingga membuat rumah-rumah adat di Indonesia umumnya merupakan bangunan tahan gempa.

Beberapa rumah adat tahan gempa diantaranya pada Rumah Gadang, rumah adat Sumatera Barat, Rumah adat Aceh, Rumah Joglo, Rumah kaki seribu, Rumah panggung Betawi dan Rumah adat Baduy. Bangunan dengan bentuk yang sangat khas ini dikatakan tahan gempa karena memiliki konstruksi yang cukup unik. Bentuk kolom pada bangunan adat biasanya tidak lurus, melainkan sedikit miring. Selain itu, kolom-kolom tersebut tidak langsung ditancapkan ke tanah melainkan bertumpu pada batu datar yang kuat dan lebar.[57]

Selain itu, faktor lain yang menyebabkan rumah adat lebih tahan gempa adalah material yang digunakan. Umumnya, rumah adat menggunakan material lokal daerahnya, contohnya seperti material kayu yang memiliki daya lentur yang lebih baik dibanding material modern seperti beton. Selain itu, sambungan antar balok menggunakan pin dan ikatan sehingga lebih fleksibel jika dihantam gempa.[58]

Zona Gempa

[sunting | sunting sumber]
Gempa bumi M 4.5+ dari (1900–2015). Bintang kuning adalah episentrum Gempa bumi Sichuan 2008

Terdapat dua zona atau sirkum gempa besar, keduanya bertempat di pertemuan antara dua lempeng tektonik. Zona Pertama, yang juga disebut Cincin Api Pasifik atau Pacifik Ring Of Fire, terletak di sekitar Samudera Pasifik, Melintasi Benua Asia bagian Timur, Benua Amerika bagian barat dan Pulau Papua di Benua Australia. Melintasi Amerika serikat. Sebagian besar wilayah San Fransisco pada tahun 1906, juga hancur akibat gempa yang melanda pada zona tersebut. bahkan negara Indonesia juga termasuk dalam dua zona seperti Cincin Api Pasifik dan Sabuk alpida yang terkena dampak gempanya.[59] Zona Kedua melewati Selatan Eurasia (Ini tidak termasuk kawasan Asia dari Gondwana seperti Semenanjung Arab dan Anak Benua India) dan terus ke arah Laut Tengah sampai ke Pegunungan atlas di Afrika Utara.

Gempa bumi pada abad ke-21

[sunting | sunting sumber]
  • Note: Berikut ini adalah daftar gempa bumi mematikan dari tahun 2000–Sekarang;
    Setidaknya >1,000 korban jiwa
Rank Tanggal Lokasi Artikel Korban Magnitudo
1 02010-01-1212 Januari 2010  Haiti, Port-au-prince Gempa bumi Haiti 2010 220,000–316,000 7.0
2 02004-12-2626 Desember 2004  Indonesia, Sumatra, Samudra Hindia Gempa bumi dan tsunami Samudra Hindia 2004 227,898 9.1–9.3
3 02008-05-1212 Mei 2008  Tiongkok, Sichuan Gempa bumi Sichuan 2008 87,587 7.9
4 02005-10-088 Oktober 2005  Pakistan
 India, Kashmir
Gempa bumi Asia Selatan 2005 87,351 7.6
5 02023-02-066 Februari 2023  Turki
 Suriah, Gaziantep
Gempa bumi Turki–Suriah 2023 62,013 7.8
6 02003-12-2626 Desember 2003  Iran, Kerman Gempa bumi Bam 2003 34,000 6.6
7 02001-01-2626 Januari 2001  India, Gujarat Gempa bumi Gujarat 2001 20,026 7.7
8 02011-03-1111 Maret 2011  Jepang, Tōhoku Gempa bumi dan tsunami Tōhoku 2011 19,759 9.0–9.1
9 02015-04-2525 April 2015    Nepal Gempa bumi Nepal April 2015 8,964 7.8
10 02006-05-2727 Mei 2006  Indonesia, Yogyakarta Gempa bumi Yogyakarta 2006 5,778 6.4
11 02018-09-2828 September 2018  Indonesia, Sulawesi Tengah Gempa bumi dan tsunami Sulawesi 2018 4,340 7.5
12 02023-09-088 September 2023  Maroko, Marrakesh-Safi Gempa bumi Maroko 2023 2,960 6.8
13 02010-04-1313 April 2010  Tiongkok, Qinghai Gempa bumi Yushu 2010 2,698 6.9
14 02003-05-2121 Mei 2003  Aljazair, Algiers Gempa bumi Boumerdes 2003 2,226 6.8
15 02021-08-1414 Agustus 2021  Haiti, Les Cayes Gempa bumi Haiti 2021 2,248 7.2
16 02023-10-077 Oktober 2023  Afghanistan, Herat Gempa bumi Herat 2023 1,482 6.3
17 02005-03-2828 Maret 2005  Indonesia, Sumatra Gempa bumi Sumatra 2005 1,314 8.6
18 02022-06-2121 Juni 2022  Afghanistan Gempa bumi Asia Selatan 2022 1,163 6.0
19 02009-09-3030 September 2009  Indonesia, Sumatera Barat Gempa bumi Sumatra Barat 2009 1,115 7.6

Dalam budaya

[sunting | sunting sumber]

Pandangan sejarah

[sunting | sunting sumber]
Sebuah ilustrasi Gempa bumi di Calabria, Italia tahun 1783

Sejak masa filsuf Yunani Anaxagoras pada abad ke-5 SM hingga abad ke-14 M, gempa bumi biasanya dikaitkan dengan "udara (uap) di rongga-rongga bumi". Thales dari Miletus (625–547 SM) adalah satu-satunya orang yang terdokumentasi dan percaya bahwa gempa bumi disebabkan oleh ketegangan antara bumi dan air.[60] Ada teori lain, termasuk keyakinan filsuf Yunani Anaxamines (585–526 SM) bahwa tanah yang kering dan basah dapat menyebabkan aktivitas seismik. Filsuf Yunani Democritus (460–371 SM) menyalahkan air sebagai penyebab utama gempa bumi. Plinius Tua menyebut bahwa gempa bumi sebagai sebuah "badai petir bawah tanah".

Mitologi dan agama

[sunting | sunting sumber]

Dalam Mitologi Nordik, gempa bumi dijelaskan sebagai perjuangan keras dewa Loki. Ketika Loki, dewa kejahatan dan perselisihan, membunuh Baldr, dewa keindahan dan cahaya, dia dihukum dengan diikat di sebuah gua dengan ular berbisa ditempatkan di atas kepalanya yang meneteskan racun. Istri Loki, Sigyn, berdiri di sampingnya dengan mangkuk untuk menangkap racun, tetapi setiap kali dia harus mengosongkan mangkuk, racun itu menetes ke wajah Loki, memaksanya untuk menyentakkan kepalanya dan meronta-ronta ke ikatannya, yang menyebabkan bumi bergetar.

Dalam mitologi Yunani, Poseidon adalah penyebab dan dewa gempa bumi. Ketika suasana hatinya sedang buruk, dia menghantam tanah dengan trisula, menyebabkan gempa bumi dan bencana lainnya. Dia juga menggunakan gempa bumi untuk menghukum dan menakuti orang-orang sebagai balas dendam.[61]

Dalam mitologi Jepang, Ōnamazu adalah ikan lele raksasa yang menyebabkan gempa bumi. Ōnamazu tinggal di lumpur di bawah bumi dan dijaga oleh dewa Kashima yang menahan ikan dengan batu. Saat Kashima lengah, ōnamazu meronta-ronta, dan menyebabkan gempa bumi yang dahsyat.[62]

Budaya Populer

[sunting | sunting sumber]
Gempa bumi Valdivia 1960. Gempa terbesar yang pernah tercatat

Dalam budaya populer modern, penggambaran gempa bumi dibentuk oleh kenangan kota-kota besar yang hancur oleh gempa, seperti yang terjadi pada Gempa bumi Kobe tahun 1995, Gempa bumi San Francisco 1906 atau Gempa bumi Kota Meksiko 1985.

Film dan televisi

[sunting | sunting sumber]

Beberapa film fiktif populer yang menggambarkan kehancuran gempa bumi pada suatu kota, dan di masa mendatang, yang diperkirakan akan terjadi di Patahan San Andreas California suatu hari nanti. Beberapa film bencana terpopuler diantaranya;

Lihat pula

[sunting | sunting sumber]

Referensi

[sunting | sunting sumber]
  1. ^ "Earthquakes with 50,000 or More Deaths". U.S. Geological Survey. Diarsipkan dari versi asli tanggal November 1, 2009. 
  2. ^ US Department of Commerce, NOAA. "NWS JetStream Max - World's Major Tectonic Plates". www.weather.gov (dalam bahasa Inggris). Diarsipkan dari versi asli tanggal 2023-03-11. Diakses tanggal 2023-03-11. 
  3. ^ Ohnaka, M. (2013). The Physics of Rock Failure and Earthquakes. Cambridge University Press. hlm. 148. ISBN 978-1-107-35533-0. 
  4. ^ Wyss, M. (1979). "Estimating expectable maximum magnitude of earthquakes from fault dimensions". Geology. 7 (7): 336–340. Bibcode:1979Geo.....7..336W. doi:10.1130/0091-7613(1979)7<336:EMEMOE>2.0.CO;2. ISSN 0091-7613. 
  5. ^ Levy D. (December 2, 2005). "A century after the 1906 earthquake, geophysicists revisit 'The Big One' and come up with a new model". Press release. Stanford University. Diarsipkan dari versi asli tanggal January 29, 2008. Diakses tanggal June 12, 2008. 
  6. ^ a b National Research Council (U.S.). Committee on the Science of Earthquakes (2003). "5. Earthquake Physics and Fault-System Science". Living on an Active Earth: Perspectives on Earthquake Science. Washington, D.C.: National Academies Press. hlm. 418. ISBN 978-0-309-06562-7. Diakses tanggal 8 July 2010.  Kesalahan pengutipan: Tanda <ref> tidak sah; nama "NRS" didefinisikan berulang dengan isi berbeda
  7. ^ Iwata, Tomotaka; Asano, Kimiyuki (2011). "Characterization of the Heterogeneous Source Model of Intraslab Earthquakes Toward Strong Ground Motion Prediction". Pure and Applied Geophysics. 168 (1–2): 117–124. Bibcode:2011PApGe.168..117I. doi:10.1007/s00024-010-0128-7. 
  8. ^ Senoa, Tetsuzo; Yoshida, Masaki (2004). "Where and why do large shallow intraslab earthquakes occur?". Physics of the Earth and Planetary Interiors. 141 (3): 183–206. Bibcode:2004PEPI..141..183S. doi:10.1016/j.pepi.2003.11.002. 
  9. ^ Gates, A.; Ritchie, D. (2006). Encyclopedia of Earthquakes and Volcanoes. Infobase Publishing. hlm. 89. ISBN 978-0-8160-6302-4. Diakses tanggal 29 November 2010. 
  10. ^ Maeda, K. (1999). "Time distribution of immediate foreshocks obtained by a stacking method". Dalam Wyss M., Shimazaki K. & Ito A. Seismicity patterns, their statistical significance and physical meaning. Reprint from Pageoph Topical Volumes. Birkhäuser. hlm. 381–394. ISBN 978-3-7643-6209-6. Diakses tanggal 29 November 2010. 
  11. ^ "Aftershock | geology". Encyclopedia Britannica (dalam bahasa Inggris). Diarsipkan dari versi asli tanggal 2015-08-23. Diakses tanggal 2021-10-13. 
  12. ^ "BRIN Ungkap Sesar Aktif Berkekuatan Besar Kepung Sumedang". CNN Indonesia. Diakses tanggal 21 Juni 2024. 
  13. ^ Kagan, Yan Y.; Jackson, David D. (1991). "Seismic Gap Hypothesis: Ten years after". Journal of Geophysical Research: Solid Earth. 96 (B13): 21419–21431. Bibcode:1991JGR....9621419K. doi:10.1029/91JB02210. 
  14. ^ McCann, W. R.; Nishenko, S. P.; Sykes, L. R.; Krause, J. (1979). "Seismic gaps and plate tectonics: Seismic potential for major boundaries". Pure and Applied Geophysics Pageoph. 117 (6): 1082–1147. Bibcode:1979PApGe.117.1082M. doi:10.1007/BF00876211. 
  15. ^ "Megathrust Selat Sunda zona seismik gap yang patut diwaspadai". Antara.news. Diakses tanggal 23 Juni 2024. 
  16. ^ Earle, Steven (September 2015). "11.3 Measuring Earthquakes". Physical Geology (dalam bahasa Inggris) (edisi ke-2nd). Diarsipkan dari versi asli tanggal 2022-10-21. Diakses tanggal 2022-10-22. 
  17. ^ "Earthquake Hazards Program". United States Geological Survey. Diarsipkan dari versi asli tanggal 2011-05-13. Diakses tanggal 2006-08-14. 
  18. ^ The 10 biggest earthquakes in history Diarsipkan 2013-09-30 di Wayback Machine., Australian Geographic, March 14, 2011.
  19. ^ "Seismicity and earthquake hazard in the UK". Quakes.bgs.ac.uk. Diarsipkan dari versi asli tanggal 2010-11-06. Diakses tanggal 2010-08-23. 
  20. ^ "Historic Earthquakes and Earthquake Statistics: Where do earthquakes occur?". United States Geological Survey. Diarsipkan dari versi asli tanggal 2006-09-25. Diakses tanggal 2006-08-14. 
  21. ^ "All about the Alpide Belt that makes Turkey a hotbed for devastating earthquakes" [Semua tentang Sabuk Alpida yang menjadikan Turki sarang gempa bumi dahsyat]. theprint.in (dalam bahasa Inggris). Diakses tanggal 7 Mei 2024. 
  22. ^ "The 12 Most Earthquake Vulnerable Cities In The World" [12 Kota Paling Rentan Gempa bumi Di Dunia]. World Atlas (dalam bahasa Inggris). Diakses tanggal 24 Januari 2024. 
  23. ^ "Global urban seismic risk Diarsipkan 2011-09-20 di Wayback Machine.." Cooperative Institute for Research in Environmental Science.
  24. ^ "Historic Earthquakes – 1964 Anchorage Earthquake". United States Geological Survey. Diarsipkan dari versi asli tanggal 2011-06-23. Diakses tanggal 2008-09-15. 
  25. ^ "The Great 1906 San Francisco earthquake of 1906". United States Geological Survey. Diarsipkan dari versi asli tanggal 2017-02-11. Diakses tanggal 2008-09-15. 
  26. ^ "The wicked problem of earthquake hazard in developing countries". www.preventionweb.net (dalam bahasa Inggris). 7 March 2018. Diarsipkan dari versi asli tanggal 2022-11-03. Diakses tanggal 2022-11-03. 
  27. ^ "Survivors of Deadly Earthquakes Must Deal with Lasting Trauma" [Korban Gempa Mematikan Harus Menghadapi Trauma Abadi]. Scientificamericab.com (dalam bahasa Inggris). Diakses tanggal 5 Mei 2024. 
  28. ^ (Whitham et al. 1976, hlm. 266) provide a brief report. (Raleigh et al. 1977) has a fuller account. (Wang et al. 2006, hlm. 779), after careful examination of the records, set the death toll at 2,041.
  29. ^ Animals and Earthquake Prediction
  30. ^ Review: Can Animals Predict Earthquakes?
  31. ^ Freund & Stolc 2013.
  32. ^ Freund & Stolc 2013.
  33. ^ Squires & Rayne 2009; McIntyre 2009.
  34. ^ Alexander 2010, hlm. 326.
  35. ^ ICEF 2011, hlm. 334; Hough 2010b, hlm. 93–95.
  36. ^ ICEF 2011, hlm. 334; Hough 2010b, hlm. 93–95.
  37. ^ Cicerone, Ebel & Britton 2009, hlm. 382.
  38. ^ Genzano et al. 2009.
  39. ^ Genzano et al. 2009.
  40. ^ Genzano et al. 2009.
  41. ^ Suárez, Gerardo; García Acosta, Virginia (2014). "The seismic alert system in Mexico City: an example of a successful Early Warning System (EWS)" (PDF). UNISDR Scientific and Technical Advisory Group. Diarsipkan dari versi asli (PDF) tanggal 2 October 2015. Diakses tanggal 28 July 2017. 
  42. ^ Podger, Pamela (July 2001). "Calistoga to get an earful of nation's first quake siren". napanet. Diarsipkan dari versi asli tanggal 2014-02-23. Diakses tanggal 2012-10-28. 
  43. ^ Snibbe, Kurt (2019-10-15). "California's earthquake early warning system is now statewide" [Sistem peringatan dini gempa California kini diterapkan di seluruh negara bagian]. Mercury News (dalam bahasa Inggris). Diakses tanggal 2019-12-31. 
  44. ^ Sankei-MSN News (2011-05-01 21:55) "The Earthquake Early Warning – the chime contained the tone of pains, even examined the 'Godzilla'" 緊急地震速報…チャイムに苦心の音色 「ゴジラ」の検討も (dalam bahasa Jepang). MSN. 2011-05-01. Diarsipkan dari versi asli tanggal 13 July 2011. Diakses tanggal 2011-06-26. 
  45. ^ "What is the Earthquake Early Warning (or "緊急地震速報 (Kinkyu Jishin Sokuho)" in Japanese)?". Japan Meteorological Agency. 2007-08-30. Diakses tanggal 2008-06-29. 
  46. ^ Sharma, Sejal (10 Juni 2023). "China is building the world's largest earthquake early warning system" [Tiongkok sedang membangun sistem peringatan dini gempa bumi terbesar di dunia]. Interesting Engineering (dalam bahasa Inggris). 
  47. ^ "Earthquake Early Warning System di Indonesia". Geoscience.ui.ac.id. Diakses tanggal 22 April 2024. 
  48. ^ Finazzi, Francesco; Fassò, Alessandro (2016). "A statistical approach to crowdsourced smartphone-based earthquake early warning systems". Stochastic Environmental Research and Risk Assessment. 31 (7): 1649–1658. arXiv:1512.01026alt=Dapat diakses gratis. doi:10.1007/s00477-016-1240-8. 
  49. ^ Finazzi, Francesco (2016). "The Earthquake Network Project: Toward a Crowdsourced Smartphone‐Based Earthquake Early Warning System". Bulletin of the Seismological Society of America. 106 (3): 1088–1099. arXiv:1512.01026alt=Dapat diakses gratis. Bibcode:2016BuSSA.106.1088F. doi:10.1785/0120150354. Diakses tanggal 10 June 2016.  [pranala nonaktif permanen]
  50. ^ Spooner, Boone (April 28, 2021). "Introducing Android Earthquake Alerts outside the U.S." Google blog. Google. Diakses tanggal May 6, 2021. 
  51. ^ "Earthquakes - Province of British Columbia". Diarsipkan dari versi asli tanggal 2019-04-04. Diakses tanggal 2016-08-24. 
  52. ^ "Jakarta Intensifkan Mitigasi Gempa Bumi". Kompas.id. Diakses tanggal 3 Agustus 2024. 
  53. ^ Joffe, H.; Rossetto, T.; Solberg, C.; O'Connor, C. (2013). "Social Representations of Earthquakes: A Study of People Living in Three Highly Seismic Areas" (PDF). Earthquake Spectra. 29 (2): 367–397. Bibcode:2013EarSp..29..367J. doi:10.1193/1.4000138. 
  54. ^ "Pakar UGM Ungkap Fakta Pentingnya Mitigasi Bencana Gempa di Indonesia". Liputan 6. Diakses tanggal 3 Agustus 2024. 
  55. ^ Reitherman, Robert (2012). Earthquakes and Engineers: An International History. Reston, VA: ASCE Press. hlm. 356–357. ISBN 9780784410714. Diarsipkan dari versi asli tanggal 2012-07-26. 
  56. ^ Smith, Charles (2006-04-15). "What San Francisco didn't learn from the '06 quake". San Francisco Chronicle. Diarsipkan dari versi asli tanggal 2009-10-26. Diakses tanggal 20 June 2011. 
  57. ^ "Pertahankan Rumah Adat dengan Kearifan Lokal! Lebih Tahan Gempa?". masterplandesa.com. Diakses tanggal 16 September 2024. 
  58. ^ "Rumah Adat Tahan Gempa". Indonesia baik.id. Diakses tanggal 16 September 2024. 
  59. ^ Ensiklopedia Pengetahuan Populer. Jakarta: Lentera. 2008. hlm. 143. ISBN 978-979-3535-28-9. 
  60. ^ "Earthquakes". Encyclopedia of World Environmental History. 1: A–G. Routledge. 2003. hlm. 358–364. 
  61. ^ George E. Dimock (1990). The Unity of the Odyssey. Univ of Massachusetts Press. hlm. 179–. ISBN 978-0-87023-721-8. 
  62. ^ "Namazu". World History Encyclopedia. Diarsipkan dari versi asli tanggal 2021-04-23. Diakses tanggal 2017-07-23. 

Pranala luar

[sunting | sunting sumber]