Lompat ke isi

Bioinformatika: Perbedaan antara revisi

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Konten dihapus Konten ditambahkan
Kembangraps (bicara | kontrib)
kTidak ada ringkasan suntingan
Iripseudocorus (bicara | kontrib)
Menambahkan referensi
 
(41 revisi perantara oleh 28 pengguna tidak ditampilkan)
Baris 1: Baris 1:
{{refimprove}}
{{refimprove}}
[[Berkas:Protein_alignment.jpg|thumb|420px|[[]] [[#Penyejajaran sekuens|Penyejajaran sekuens]] (''Sequence alignment''), salah satu aplikasi dasar bioinformatika. [[Sekuensing|Sekuens]] yang dianalisis dalam contoh ini adalah [[asam amino]] dari empat [[protein]] [[hemoglobin]].]]
[[Berkas:Protein_alignment.jpg|jmpl|420px|[[#Penyejajaran sekuens|Penyejajaran sekuens]] (''Sequence alignment''), salah satu aplikasi dasar bioinformatika. [[Sekuensing|Sekuens]] yang dianalisis dalam contoh ini adalah [[asam amino]] dari empat [[protein]] [[hemoglobin]].]]


'''Bioinformatika''' ([[bahasa Inggris]]: ''bioinformatics'') adalah ([[ilmu]] yang mempelajari) penerapan teknik [[komputasi]]onal untuk mengelola dan menganalisis informasi [[biologi]]s. Bidang ini mencakup penerapan metode-metode [[matematika]], [[statistika]], dan [[informatika]] untuk memecahkan masalah-masalah biologis, terutama dengan menggunakan sekuens [[DNA]] dan [[asam amino]] serta informasi yang berkaitan dengannya. Contoh topik utama bidang ini meliputi [[basis data]] untuk mengelola informasi biologis, penyejajaran sekuens (''sequence alignment''), prediksi struktur untuk meramalkan bentuk struktur [[protein]] maupun struktur sekunder [[RNA]], analisis [[filogenetika|filogenetik]], dan analisis ekspresi [[gen]].
'''Bioinformatika''' ([[bahasa Inggris]]: ''bioinformatics'') adalah [[ilmu]] yang mempelajari penerapan teknik [[komputasi]]onal untuk mengelola dan menganalisis informasi [[biologi]]s.<ref>{{Cite book|last=Susilawati dan Bachtiar, N.|first=|date=2018|url=http://repository.uin-suska.ac.id/26091/1/Buku%20Biologi%20Dasar%20Terintegrasi.pdf|title=Biologi Dasar Terintegrasi|location=Pekanbaru|publisher=Kreasi Edukasi|isbn=978-602-6879-99-8|pages=4|url-status=live|access-date=2021-01-30|archive-date=2021-04-15|archive-url=https://web.archive.org/web/20210415143329/http://repository.uin-suska.ac.id/26091/1/Buku%20Biologi%20Dasar%20Terintegrasi.pdf|dead-url=no}}</ref> Bidang ini mencakup penerapan metode-metode [[matematika]], [[statistika]], dan [[informatika]] untuk memecahkan masalah-masalah biologis, terutama dengan menggunakan sekuens [[DNA]] dan [[asam amino]] serta informasi yang berkaitan dengannya. Contoh topik utama bidang ini meliputi [[basis data]] untuk mengelola informasi biologis, penyejajaran sekuens (''sequence alignment''), prediksi struktur untuk meramalkan bentuk struktur [[protein]] maupun struktur sekunder [[RNA]], analisis [[filogenetika|filogenetik]], dan analisis ekspresi [[gen]].<ref name=":0">{{Cite book|last=Apsari|first=Gadis Retno|last2=Adawiyah|first2=Robiah|last3=Linatari|first3=Mey Ayu|last4=Rahmayadi|first4=Dessy|last5=Pradana|first5=Mohammad Syaiful|date=2023|url=http://repository.unisda.ac.id/1097/1/Buku%20Pensejajaran%20Sequence.pdf|title=Bioinformatika: Analisis Pensejajaran Sequence|publisher=Pustaka Ilalang|isbn=978-602-6715-37-1|pages=|url-status=live}}</ref>


== Sejarah ==
== Sejarah ==
Istilah ''bioinformatics'' mulai dikemukakan pada pertengahan era [[1980-an]] untuk mengacu pada penerapan [[komputer]] dalam biologi. Namun demikian, penerapan bidang-bidang dalam bioinformatika (seperti pembuatan basis data dan pengembangan [[algoritma]] untuk analisis [[sekuens biologis]]) sudah dilakukan sejak tahun [[1960-an]].
Istilah ''bioinformatics'' mulai dikemukakan pada pertengahan era [[1980-an]] untuk mengacu pada penerapan [[komputer]] dalam biologi. Namun, penerapan bidang-bidang dalam bioinformatika (seperti pembuatan basis data dan pengembangan [[algoritme]] untuk analisis [[sekuens biologis]]) sudah dilakukan sejak tahun [[1960-an]].


Kemajuan teknik [[biologi molekular]] dalam mengungkap sekuens biologis dari protein (sejak awal [[1950-an]]) dan [[asam nukleat]] (sejak 1960-an) mengawali perkembangan basis data dan teknik analisis sekuens biologis. Basis data sekuens protein mulai dikembangkan pada tahun 1960-an di [[Amerika Serikat]], sementara basis data sekuens DNA dikembangkan pada akhir 1970-an di Amerika Serikat dan [[Jerman]] (pada ''European Molecular Biology Laboratory'', Laboratorium Biologi Molekular [[Eropa]]). Penemuan teknik [[sekuensing]] DNA yang lebih cepat pada pertengahan 1970-an menjadi landasan terjadinya ledakan jumlah sekuens DNA yang berhasil diungkapkan pada 1980-an dan [[1990-an]], menjadi salah satu pembuka jalan bagi proyek-proyek pengungkapan [[genom]], meningkatkan kebutuhan akan pengelolaan dan analisis sekuens, dan pada akhirnya menyebabkan lahirnya bioinformatika.
Kemajuan teknik [[biologi molekular]] dalam mengungkap sekuens biologis dari protein (sejak awal [[1950-an]]) dan [[asam nukleat]] (sejak 1960-an) mengawali perkembangan basis data dan teknik analisis sekuens biologis. Basis data sekuens protein mulai dikembangkan pada tahun 1960-an di [[Amerika Serikat]], sementara basis data sekuens DNA dikembangkan pada akhir 1970-an di Amerika Serikat dan [[Jerman]] (pada ''European Molecular Biology Laboratory'', Laboratorium Biologi Molekular [[Eropa]]). Penemuan teknik [[sekuensing]] DNA yang lebih cepat pada pertengahan 1970-an menjadi landasan terjadinya ledakan jumlah sekuens DNA yang berhasil diungkapkan pada 1980-an dan [[1990-an]], menjadi salah satu pembuka jalan bagi proyek-proyek pengungkapan [[genom]], meningkatkan kebutuhan akan pengelolaan dan analisis sekuens, dan pada akhirnya menyebabkan lahirnya bioinformatika.


Perkembangan [[internet]] juga mendukung berkembangnya bioinformatika. Basis data bioinformatika yang terhubung melalui internet memudahkan ilmuwan mengumpulkan hasil sekuensing ke dalam basis data tersebut maupun memperoleh sekuens biologis sebagai bahan analisis. Selain itu, penyebaran [[program]]-program aplikasi bioinformatika melalui internet memudahkan ilmuwan mengakses program-program tersebut dan kemudian memudahkan pengembangannya.
Perkembangan [[Internet]] juga mendukung berkembangnya bioinformatika. Basis data bioinformatika yang terhubung melalui Internet memudahkan ilmuwan mengumpulkan hasil sekuensing ke dalam basis data tersebut maupun memperoleh sekuens biologis sebagai bahan analisis. Selain itu, penyebaran [[program]]-program aplikasi bioinformatika melalui Internet memudahkan ilmuwan mengakses program-program tersebut dan kemudian memudahkan pengembangannya.<ref>{{Cite book|last=Subekti|first=Hasan|last2=Handriyan|first2=Aris|last3=Purnomo|first3=Aris Rudi|last4=Wulandari|first4=Fitria Eka|last5=Widiansyah|first5=Arindra Trisn|date=2019|url=https://www.researchgate.net/publication/330555058_BIOTEKNOLOGI_Sebuah_Pembelajaran_Terintegrasi_STEM_pada_Mata_Kuliah_Bioteknologi_bagi_Mahasiswa_Calon_Guru_IPA|title=BIOTEKNOLOGI: SEBUAH PEMBELAJARAN TERINTEGRASI STEM PADA MATA KULIAH BIOTEKNOLOGI BAGI MAHASISWA CALON GURU IPA|location=Gresik|publisher=Graniti|isbn=978-602-5811-26-5|url-status=live}}</ref>


== Penerapan utama bioinformatika ==
== Penerapan utama bioinformatika ==
Baris 17: Baris 17:
Basis data utama untuk sekuens asam nukleat saat ini adalah [http://www.ncbi.nlm.nih.gov/Genbank/index.html GenBank] (Amerika Serikat), [http://www.ebi.ac.uk/embl/ EMBL] (Eropa), dan [http://www.ddbj.nig.ac.jp/ DDBJ]{{en}} (''DNA Data Bank of Japan'', [[Jepang]]). Ketiga basis data tersebut bekerja sama dan bertukar data secara harian untuk menjaga keluasan cakupan masing-masing basis data. Sumber utama data sekuens asam nukleat adalah submisi langsung dari periset individual, proyek sekuensing [[genom]], dan pendaftaran [[paten]]. Selain berisi sekuens asam nukleat, entri dalam basis data sekuens asam nukleat umumnya mengandung informasi tentang jenis asam nukleat ([[DNA]] atau [[RNA]]), nama [[organisme]] sumber asam nukleat tersebut, dan pustaka yang berkaitan dengan sekuens asam nukleat tersebut.
Basis data utama untuk sekuens asam nukleat saat ini adalah [http://www.ncbi.nlm.nih.gov/Genbank/index.html GenBank] (Amerika Serikat), [http://www.ebi.ac.uk/embl/ EMBL] (Eropa), dan [http://www.ddbj.nig.ac.jp/ DDBJ]{{en}} (''DNA Data Bank of Japan'', [[Jepang]]). Ketiga basis data tersebut bekerja sama dan bertukar data secara harian untuk menjaga keluasan cakupan masing-masing basis data. Sumber utama data sekuens asam nukleat adalah submisi langsung dari periset individual, proyek sekuensing [[genom]], dan pendaftaran [[paten]]. Selain berisi sekuens asam nukleat, entri dalam basis data sekuens asam nukleat umumnya mengandung informasi tentang jenis asam nukleat ([[DNA]] atau [[RNA]]), nama [[organisme]] sumber asam nukleat tersebut, dan pustaka yang berkaitan dengan sekuens asam nukleat tersebut.


Sementara itu, contoh beberapa basis data penting yang menyimpan sekuens primer protein adalah [http://pir.georgetown.edu/home.shtml PIR] (''Protein Information Resource'', Amerika Serikat), [http://au.expasy.org/sprot/ Swiss-Prot] (Eropa), dan [http://www.ebi.ac.uk/trembl/ TrEMBL] (Eropa). Ketiga basis data tersebut telah digabungkan dalam [http://www.ebi.uniprot.org/index.shtml UniProt] (yang didanai terutama oleh Amerika Serikat). Entri dalam UniProt mengandung informasi tentang sekuens protein, nama organisme sumber protein, pustaka yang berkaitan, dan komentar yang umumnya berisi penjelasan mengenai fungsi protein tersebut.
Sementara itu, contoh beberapa basis data penting yang menyimpan sekuens primer protein adalah [http://pir.georgetown.edu/home.shtml PIR]{{Pranala mati|date=Februari 2021 |bot=InternetArchiveBot |fix-attempted=yes }} (''Protein Information Resource'', Amerika Serikat), [http://au.expasy.org/sprot/ Swiss-Prot] (Eropa), dan [http://www.ebi.ac.uk/trembl/ TrEMBL] (Eropa). Ketiga basis data tersebut telah digabungkan dalam [http://www.ebi.uniprot.org/index.shtml UniProt] (yang didanai terutama oleh Amerika Serikat). Entri dalam UniProt mengandung informasi tentang sekuens protein, nama organisme sumber protein, pustaka yang berkaitan, dan komentar yang umumnya berisi penjelasan mengenai fungsi protein tersebut.<ref name=":1">{{Cite book|last=Pathak|first=Rajesh Kumar|last2=Singh|first2=Dev Bukhsh|last3=Singh|first3=Rahul|date=2022|url=http://dx.doi.org/10.1016/b978-0-323-89775-4.00006-7|title=Introduction to basics of bioinformatics|publisher=Elsevier|pages=1-15|url-status=live}}</ref>


[http://www.ncbi.nlm.nih.gov/BLAST/ '''BLAST'''] (''Basic Local Alignment Search Tool'') merupakan perkakas bioinformatika yang berkaitan erat dengan penggunaan basis data sekuens biologis. Penelusuran BLAST (''BLAST search'') pada basis data sekuens memungkinkan ilmuwan untuk mencari sekuens asam nukleat maupun protein yang mirip dengan sekuens tertentu yang dimilikinya. Hal ini berguna misalnya untuk menemukan [[gen]] sejenis pada beberapa [[organisme]] atau untuk memeriksa keabsahan hasil [[sekuensing]] maupun untuk memeriksa fungsi gen hasil sekuensing. [[Algoritma]] yang mendasari kerja BLAST adalah penyejajaran sekuens.
[http://www.ncbi.nlm.nih.gov/BLAST/ '''BLAST'''] (''Basic Local Alignment Search Tool'') merupakan perkakas bioinformatika yang berkaitan erat dengan penggunaan basis data sekuens biologis. Penelusuran BLAST (''BLAST search'') pada basis data sekuens memungkinkan ilmuwan untuk mencari sekuens asam nukleat maupun protein yang mirip dengan sekuens tertentu yang dimilikinya. Hal ini berguna misalnya untuk menemukan [[gen]] sejenis pada beberapa [[organisme]] atau untuk memeriksa keabsahan hasil [[sekuensing]] maupun untuk memeriksa fungsi gen hasil sekuensing. [[Algoritme]] yang mendasari kerja BLAST adalah penyejajaran sekuens.<ref name=":0" />


[http://www.rcsb.org/pdb/ PDB] (''Protein Data Bank'', Bank Data Protein) adalah basis data tunggal yang menyimpan model struktural tiga dimensi [[protein]] dan [[asam nukleat]] hasil penentuan eksperimental (dengan [[kristalografi sinar-X]], [[spektroskopi NMR]] dan [[mikroskopi elektron]]). PDB menyimpan data struktur sebagai [[koordinat tiga dimensi]] yang menggambarkan posisi [[atom]]-atom dalam protein ataupun asam nukleat.
[http://www.rcsb.org/pdb/ PDB] {{Webarchive|url=https://web.archive.org/web/20080828002005/http://www.rcsb.org/pdb/ |date=2008-08-28 }} (''Protein Data Bank'', Bank Data Protein) adalah basis data tunggal yang menyimpan model struktural tiga dimensi [[protein]]<ref name=":1" /> dan [[asam nukleat]] hasil penentuan eksperimental (dengan [[kristalografi sinar-X]], [[spektroskopi NMR]] dan [[mikroskopi elektron]]). PDB menyimpan data struktur sebagai [[koordinat tiga dimensi]] yang menggambarkan posisi [[atom]]-atom dalam protein ataupun asam nukleat.


=== Penyejajaran sekuens ===
=== Penyejajaran sekuens ===
'''Penyejajaran sekuens''' ('''''sequence alignment''''') adalah proses penyusunan/pengaturan dua atau lebih [[sekuens]] sehingga persamaan sekuens-sekuens tersebut tampak nyata. Hasil dari proses tersebut juga disebut sebagai ''sequence alignment'' atau ''alignment'' saja. Baris sekuens dalam suatu ''alignment'' diberi sisipan (umumnya dengan tanda "–") sedemikian rupa sehingga kolom-kolomnya memuat karakter yang identik atau sama di antara sekuens-sekuens tersebut. Berikut adalah contoh ''alignment'' DNA dari dua sekuens pendek DNA yang berbeda, "ccatcaac" dan "caatgggcaac" (tanda "|" menunjukkan kecocokan atau ''match'' di antara kedua sekuens).
'''Penyejajaran sekuens''' ('''''sequence alignment''''') adalah proses penyusunan/pengaturan dua atau lebih [[sekuens]] sehingga persamaan sekuens-sekuens tersebut tampak nyata. Hasil dari proses tersebut juga disebut sebagai ''sequence alignment'' atau ''alignment'' saja.<ref name=":2">{{Cite book|last=Muflikhah|first=Lailil|last2=Widodo|last3=Mahmudy|first3=Wayan Firdaus|last4=Solimun|date=2021-07-31|url=https://books.google.co.id/books?hl=id&lr=&id=xto7EAAAQBAJ&oi=fnd&pg=PP1&dq=machine+learning+dalam+bioinformatika&ots=MnzRf35JXs&sig=tAhkqV1cnBeW9MaZfHUQzqbXTJI&redir_esc=y#v=onepage&q&f=false|title=Machine Learning dalam Bioinformatika|publisher=Universitas Brawijaya Press|isbn=978-623-296-122-7|language=id}}</ref> Baris sekuens dalam suatu ''alignment'' diberi sisipan (umumnya dengan tanda "–") sedemikian rupa sehingga kolom-kolomnya memuat karakter yang identik atau sama di antara sekuens-sekuens tersebut.

Berikut adalah contoh ''alignment'' DNA dari dua sekuens pendek DNA yang berbeda, "ccatcaac" dan "caatgggcaac" (tanda "|" menunjukkan kecocokan atau ''match'' di antara kedua sekuens).


ccat---caac
ccat---caac
Baris 30: Baris 32:
caatgggcaac
caatgggcaac


''Sequence alignment'' merupakan metode dasar dalam analisis sekuens. Metode ini digunakan untuk mempelajari [[evolusi]] sekuens-sekuens dari leluhur yang sama (''common ancestor''). Ketidakcocokan (''mismatch'') dalam ''alignment'' diasosiasikan dengan proses [[mutasi]], sedangkan kesenjangan (''gap'', tanda "–") diasosiasikan dengan proses insersi atau delesi. ''Sequence alignment'' memberikan [[hipotesis]] atas proses [[evolusi]] yang terjadi dalam sekuens-sekuens tersebut. Misalnya, kedua sekuens dalam contoh ''alignment'' di atas bisa jadi berevolusi dari sekuens yang sama "ccatgggcaac". Dalam kaitannya dengan hal ini, ''alignment'' juga dapat menunjukkan posisi-posisi yang dipertahankan (''conserved'') selama evolusi dalam sekuens-sekuens [[protein]], yang menunjukkan bahwa posisi-posisi tersebut bisa jadi penting bagi struktur atau fungsi protein tersebut.
''Sequence alignment'' merupakan metode dasar dalam analisis sekuens. Metode ini digunakan untuk mempelajari [[evolusi]] sekuens-sekuens dari leluhur yang sama (''common ancestor''). Ketidakcocokan (''mismatch,'' tanda".") dalam ''alignment'' diasosiasikan dengan proses [[mutasi]], sedangkan kesenjangan (''gap'', tanda "–") diasosiasikan dengan proses insersi atau delesi.<ref name=":2" /> ''Sequence alignment'' memberikan [[hipotesis]] atas proses [[evolusi]] yang terjadi dalam sekuens-sekuens tersebut. Misalnya, kedua sekuens dalam contoh ''alignment'' di atas bisa jadi berevolusi dari sekuens yang sama "ccatgggcaac". Dalam kaitannya dengan hal ini, ''alignment'' juga dapat menunjukkan posisi-posisi yang dipertahankan (''conserved'') selama evolusi dalam sekuens-sekuens [[protein]], yang menunjukkan bahwa posisi-posisi tersebut bisa jadi penting bagi struktur atau fungsi protein tersebut.


Selain itu, ''sequence alignment'' juga digunakan untuk mencari sekuens yang mirip atau sama dalam [[basis data]] sekuens. BLAST adalah salah satu metode ''alignment'' yang sering digunakan dalam penelusuran basis data sekuens. BLAST menggunakan algoritma [[heuristik]] dalam penyusunan ''alignment''.
Selain itu, ''sequence alignment'' juga digunakan untuk mencari sekuens yang mirip atau sama dalam [[basis data]] sekuens. BLAST adalah salah satu metode ''alignment'' yang sering digunakan dalam penelusuran basis data sekuens. BLAST menggunakan algoritme [[heuristik]] dalam penyusunan ''alignment''.


Beberapa metode ''alignment'' lain yang merupakan pendahulu BLAST adalah metode "Needleman-Wunsch" dan "Smith-Waterman". Metode Needleman-Wunsch digunakan untuk menyusun '''''alignment'' global''' di antara dua atau lebih sekuens, yaitu ''alignment'' atas keseluruhan panjang sekuens tersebut. Metode Smith-Waterman menghasilkan '''''alignment'' lokal''', yaitu alignment atas bagian-bagian dalam sekuens. Kedua metode tersebut menerapkan [[pemrograman dinamik]] (''dynamic programming'') dan hanya efektif untuk ''alignment'' dua sekuens ('''''pairwise alignment''''')
Beberapa metode ''alignment'' lain yang merupakan pendahulu BLAST adalah metode "Needleman-Wunsch" dan "Smith-Waterman". Metode Needleman-Wunsch digunakan untuk menyusun '''''alignment'' global''' di antara dua atau lebih sekuens, yaitu ''alignment'' atas keseluruhan panjang sekuens tersebut dan memperbolehkan adanya ''gap''.<ref name=":2" /> Metode Smith-Waterman menghasilkan '''''alignment'' lokal''', yaitu alignment atas bagian-bagian dalam sekuens. Kedua metode tersebut menerapkan [[pemrograman dinamik]] (''dynamic programming'') dan hanya efektif untuk ''alignment'' dua sekuens ('''''pairwise alignment''''')


Clustal adalah program bioinformatika untuk ''alignment'' multipel ('''''multiple alignment'''''), yaitu ''alignment'' beberapa sekuens sekaligus. Dua varian utama Clustal adalah [http://www.ebi.ac.uk/clustalw/ ClustalW] dan [http://bips.u-strasbg.fr/en/Documentation/ClustalX/ ClustalX].
Clustal adalah program bioinformatika untuk ''alignment'' multipel ('''''multiple alignment'''''), yaitu ''alignment'' beberapa sekuens sekaligus. Dua varian utama Clustal adalah [http://www.ebi.ac.uk/clustalw/ ClustalW] dan [http://bips.u-strasbg.fr/en/Documentation/ClustalX/ ClustalX]{{Pranala mati|date=Februari 2021 |bot=InternetArchiveBot |fix-attempted=yes }}.


Metode lain yang dapat diterapkan untuk ''alignment'' sekuens adalah metode yang berhubungan dengan '''''Hidden Markov Model''''' ("Model Markov Tersembunyi", '''HMM'''). HMM merupakan model statistika yang mulanya digunakan dalam [[ilmu komputer]] untuk mengenali pembicaraan manusia (''speech recognition''). Selain digunakan untuk alignment, HMM juga digunakan dalam metode-metode analisis sekuens lainnya, seperti prediksi daerah pengkode protein dalam [[genom]] dan prediksi struktur sekunder protein.
Metode lain yang dapat diterapkan untuk ''alignment'' sekuens adalah metode yang berhubungan dengan '''''Hidden Markov Model''''' ("Model Markov Tersembunyi", '''HMM'''). HMM merupakan model statistika yang mulanya digunakan dalam [[ilmu komputer]] untuk mengenali pembicaraan manusia (''speech recognition''). Selain digunakan untuk alignment, HMM juga digunakan dalam metode-metode analisis sekuens lainnya, seperti prediksi daerah pengkode protein dalam [[genom]] dan prediksi struktur sekunder protein.


=== Prediksi struktur protein ===
=== Prediksi struktur protein ===
[[Berkas:Hemagglutinin molecule.png|thumb|right|Model protein [[hemaglutinin]] dari [[virus]] [[influensa]]]]
[[Berkas:Hemagglutinin molecule.png|jmpl|ka|Model protein [[hemaglutinin]] dari [[virus]] [[influensa]]]]
Secara kimia/fisika, bentuk struktur [[protein]] diungkap dengan [[kristalografi sinar-X]] ataupun [[spektroskopi NMR]], namun kedua metode tersebut sangat memakan waktu dan relatif mahal. Sementara itu, metode [[sekuensing]] protein relatif lebih mudah mengungkapkan [[sekuens]] [[asam amino]] protein. Prediksi struktur protein berusaha meramalkan struktur tiga dimensi protein berdasarkan sekuens asam aminonya (dengan kata lain, meramalkan struktur tersier dan struktur sekunder berdasarkan struktur primer protein). Secara umum, metode prediksi struktur protein yang ada saat ini dapat dikategorikan ke dalam dua kelompok, yaitu metode pemodelan protein komparatif dan metode pemodelan ''de novo''.
Secara kimia/fisika, bentuk struktur [[protein]] diungkap dengan [[kristalografi sinar-X]] ataupun [[spektroskopi NMR]], namun kedua metode tersebut sangat memakan waktu dan relatif mahal. Sementara itu, metode [[sekuensing]] protein relatif lebih mudah mengungkapkan [[sekuens]] [[asam amino]] protein.<ref name=":1" /> Prediksi struktur protein berusaha meramalkan struktur tiga dimensi protein berdasarkan sekuens asam aminonya (dengan kata lain, meramalkan struktur tersier dan struktur sekunder berdasarkan struktur primer protein). Secara umum, metode prediksi struktur protein yang ada saat ini dapat dikategorikan ke dalam dua kelompok, yaitu metode pemodelan protein komparatif dan metode pemodelan ''de novo''.


'''Pemodelan protein komparatif''' (''comparative protein modelling'') meramalkan struktur suatu protein berdasarkan struktur protein lain yang sudah diketahui. Salah satu penerapan metode ini adalah '''pemodelan homologi''' (''homology modelling''), yaitu prediksi struktur tersier protein berdasarkan kesamaan struktur primer protein. Pemodelan homologi didasarkan pada [[teori]] bahwa dua protein yang [[homolog]] memiliki struktur yang sangat mirip satu sama lain. Pada metode ini, struktur suatu protein (disebut protein target) ditentukan berdasarkan struktur protein lain (protein templat) yang sudah diketahui dan memiliki kemiripan sekuens dengan protein target tersebut. Selain itu, penerapan lain pemodelan komparatif adalah '''''protein threading''''' yang didasarkan pada kemiripan struktur tanpa kemiripan sekuens primer. Latar belakang ''protein threading'' adalah bahwa struktur protein lebih dikonservasi daripada sekuens protein selama evolusi; daerah-daerah yang penting bagi fungsi protein dipertahankan strukturnya. Pada pendekatan ini, struktur yang paling kompatibel untuk suatu sekuens asam amino dipilih dari semua jenis struktur tiga dimensi protein yang ada. Metode-metode yang tergolong dalam ''protein threading'' berusaha menentukan tingkat kompatibilitas tersebut.
'''Pemodelan protein komparatif''' (''comparative protein modelling'') meramalkan struktur suatu protein berdasarkan struktur protein lain yang sudah diketahui. Salah satu penerapan metode ini adalah '''pemodelan homologi''' (''homology modelling''), yaitu prediksi struktur tersier protein berdasarkan kesamaan struktur primer protein. Pemodelan homologi didasarkan pada [[teori]] bahwa dua protein yang [[homolog]] memiliki struktur yang sangat mirip satu sama lain. Pada metode ini, struktur suatu protein (disebut protein target) ditentukan berdasarkan struktur protein lain (protein templat) yang sudah diketahui dan memiliki kemiripan sekuens dengan protein target tersebut. Selain itu, penerapan lain pemodelan komparatif adalah '''''protein threading''''' yang didasarkan pada kemiripan struktur tanpa kemiripan sekuens primer. Latar belakang ''protein threading'' adalah bahwa struktur protein lebih dikonservasi daripada sekuens protein selama evolusi; daerah-daerah yang penting bagi fungsi protein dipertahankan strukturnya. Pada pendekatan ini, struktur yang paling kompatibel untuk suatu sekuens asam amino dipilih dari semua jenis struktur tiga dimensi protein yang ada. Metode-metode yang tergolong dalam ''protein threading'' berusaha menentukan tingkat kompatibilitas tersebut.


Dalam pendekatan '''''de novo''''' atau ''ab initio'', struktur protein ditentukan dari sekuens primernya tanpa membandingkan dengan struktur protein lain. Terdapat banyak kemungkinan dalam pendekatan ini, misalnya dengan menirukan proses pelipatan (''folding'') protein dari sekuens primernya menjadi struktur tersiernya (misalnya dengan simulasi [[dinamika molekular]]), atau dengan optimisasi global fungsi energi protein. Prosedur-prosedur ini cenderung membutuhkan proses komputasi yang intens, sehingga saat ini hanya digunakan dalam menentukan struktur protein-protein kecil. Beberapa usaha telah dilakukan untuk mengatasi kekurangan sumber daya komputasi tersebut, misalnya dengan [[superkomputer]] (misalnya superkomputer [[Blue Gene]] [http://www.research.ibm.com/bluegene/] dari [[IBM]]) atau [[komputasi terdistribusi]] (''distributed computing'', misalnya proyek [http://folding.stanford.edu/ Folding@home]) maupun [[komputasi grid]].
Dalam pendekatan '''''de novo''''' atau ''ab initio'', struktur protein ditentukan dari sekuens primernya tanpa membandingkan dengan struktur protein lain. Terdapat banyak kemungkinan dalam pendekatan ini, misalnya dengan menirukan proses pelipatan (''folding'') protein dari sekuens primernya menjadi struktur tersiernya (misalnya dengan simulasi [[dinamika molekular]]), atau dengan optimisasi global fungsi energi protein. Prosedur-prosedur ini cenderung membutuhkan proses komputasi yang intens, sehingga saat ini hanya digunakan dalam menentukan struktur protein-protein kecil. Beberapa usaha telah dilakukan untuk mengatasi kekurangan sumber daya komputasi tersebut, misalnya dengan [[superkomputer]] (misalnya superkomputer [[Blue Gene]] [http://www.research.ibm.com/bluegene/] dari [[IBM]]) atau [[komputasi terdistribusi]] (''distributed computing'', misalnya proyek [http://folding.stanford.edu/ Folding@home]{{Webarchive|url=https://web.archive.org/web/20120908075542/http://folding.stanford.edu/English/HomePage |date=2012-09-08 }}) maupun [[komputasi grid]].


=== Analisis ekspresi gen ===
=== Analisis ekspresi gen ===
[[Berkas:Bcr746-2-l.jpg|thumb|right|Analisis klastering ekspresi gen pada [[kanker payudara]]]]
[[Berkas:Bcr746-2-l.jpg|jmpl|ka|Analisis klastering ekspresi gen pada [[kanker payudara]]]]
[[Ekspresi genetik|Ekspresi gen]] dapat ditentukan dengan mengukur kadar [[mRNA]] dengan berbagai macam teknik (misalnya dengan [http://en.wiki-indonesia.club/wiki/DNA_microarray ''microarray''] ataupun [http://en.wiki-indonesia.club/wiki/Serial_Analysis_of_Gene_Expression ''Serial Analysis of Gene Expression''] ["Analisis Serial Ekspresi Gen", SAGE]). Teknik-teknik tersebut umumnya diterapkan pada analisis ekspresi gen skala besar yang mengukur ekspresi banyak [[gen]] (bahkan [[genom]]) dan menghasilkan data skala besar. Metode-metode penggalian data (''data mining'') diterapkan pada data tersebut untuk memperoleh pola-pola informatif. Sebagai contoh, metode-metode komparasi digunakan untuk membandingkan ekspresi di antara gen-gen, sementara metode-metode klastering (''clustering'') digunakan untuk mempartisi data tersebut berdasarkan kesamaan ekspresi gen.
[[Ekspresi genetik|Ekspresi gen]] dapat ditentukan dengan mengukur kadar [[mRNA]] dengan berbagai macam teknik (misalnya dengan [http://en.wiki-indonesia.club/wiki/DNA_microarray ''microarray''] ataupun [http://en.wiki-indonesia.club/wiki/Serial_Analysis_of_Gene_Expression ''Serial Analysis of Gene Expression''] ["Analisis Serial Ekspresi Gen", SAGE]). Teknik-teknik tersebut umumnya diterapkan pada analisis ekspresi gen skala besar yang mengukur ekspresi banyak [[gen]] (bahkan [[genom]]) dan menghasilkan data skala besar. Metode-metode penggalian data (''data mining'') diterapkan pada data tersebut untuk memperoleh pola-pola informatif. Sebagai contoh, metode-metode komparasi digunakan untuk membandingkan ekspresi di antara gen-gen, sementara metode-metode klastering (''clustering'') digunakan untuk mempartisi data tersebut berdasarkan kesamaan ekspresi gen.

<!-- == Bioinformatika dan ilmu pengobatan == -->
<!-- == Bioinformatika dan ilmu pengobatan == -->

== Perangkat lunak ==
Terdapat sejumlah perangkat lunak gratis dan sumber terbuka yang telah ada dan terus berkembang sejak 1980-an.<ref name=obf-main>{{cite web |title=Open Bioinformatics Foundation: About us |url=http://www.open-bio.org/wiki/Main_Page |website=Official website |publisher=[[Open Bioinformatics Foundation]] |accessdate=10 May 2011 |archive-date=2011-05-12 |archive-url=https://web.archive.org/web/20110512022059/http://open-bio.org/wiki/Main_Page |dead-url=no }}</ref> Beberapa paket perangkat lunak sumber terbuka yang tersedia, antara lain [[Bioconductor]], [[BioPerl]], [[Biopython]], [[BioJava]], [[BioJS]], [[BioRuby]], [[Bioclipse]], [[EMBOSS]], [[.NET Bio]], [[Orange (perangkat lunak)|Orange]], [[Apache Taverna]], [[UGENE]], dan [[GenoCAD]].


== Bioinformatika di Indonesia ==
== Bioinformatika di Indonesia ==
Saat ini mata ajaran bioinformatika maupun mata ajaran dengan muatan bioinformatika sudah diajarkan di beberapa [[perguruan tinggi]] di [[Indonesia]]. [http://www.sith.itb.ac.id Sekolah Ilmu dan Teknologi Hayati] [[ITB]] menawarkan mata kuliah "Pengantar Bioinformatika" untuk program Sarjana dan mata kuliah "Bioinformatika" untuk program Pascasarjana. Fakultas Teknobiologi [[Universitas Atma Jaya]], [[Jakarta]] menawarkan mata kuliah "Pengantar Bioinformatika". Mata kuliah "Bioinformatika" diajarkan pada Program Pascasarjana Kimia Fakultas MIPA [[Universitas Indonesia]] (UI), Jakarta. Mata kuliah "Proteomik dan Bioinformatika" termasuk dalam kurikulum program S3 bioteknologi [[Universitas Gadjah Mada]] (UGM), [[Yogyakarta]]. Materi bioinformatika termasuk di dalam silabus beberapa mata kuliah untuk program [[sarjana]] maupun [[pascasarjana]] biokimia,biologi, dan bioteknologi pada [[Institut Pertanian Bogor]] (IPB). Selain itu, riset-riset yang mengarah pada bioinformatika juga telah dilaksanakan oleh mahasiswa program S1 Ilmu Komputer maupun program pascasarjana biologi serta bioteknologi IPB.
Saat ini mata ajaran bioinformatika maupun mata ajaran dengan muatan bioinformatika sudah diajarkan di beberapa [[perguruan tinggi]] di [[Indonesia]]. [http://www.sith.itb.ac.id Sekolah Ilmu dan Teknologi Hayati] [[ITB]] menawarkan mata kuliah "Pengantar Bioinformatika" untuk program Sarjana dan mata kuliah "Bioinformatika" untuk program Pascasarjana. [http://fmipa.ipb.ac.id/ Fakultas Matematika dan Ilmu Pengetahuan Alam, IPB] menyelenggarakan mata kuliah interdept "Pengantar Bioinformatika" yang wajib diambil oleh mahasiswa program sarjana Ilmu Komputer, Biologi, dan Biokimia. Selain itu pada program [https://cs.ipb.ac.id/en/ pascasarjana Ilmu Komputer, FMIPA, IPB] tersedia mata kuliah pilihan "Topik dalam Bioinformatika". Fakultas Teknobiologi [[Universitas Atma Jaya]], [[Jakarta]] menawarkan mata kuliah "Pengantar Bioinformatika" sebagai mata kuliah wajib dan "Pemodelan Struktur Protein" sebagai mata kuliah pilihan untuk tingkat program Sarjana. Fakultas Teknobiologi [[Universitas Atma Jaya Yogyakarta]] (UAJY) menyertakan Mata Kuliah "Bioinformatika" dalam mata kuliah wajib tingkat program Sarjana. Mata kuliah "Bioinformatika" diajarkan pada Program Pascasarjana Kimia Fakultas MIPA [[Universitas Indonesia]] (UI), Jakarta. Mata kuliah "Proteomik dan Bioinformatika" termasuk dalam kurikulum program S3 bioteknologi [[Universitas Gadjah Mada]] (UGM), [[Yogyakarta]]. Materi bioinformatika termasuk di dalam silabus beberapa mata kuliah untuk program [[sarjana]] maupun [[pascasarjana]] biokimia,biologi, dan bioteknologi pada [[Institut Pertanian Bogor]] (IPB). Selain itu, riset-riset yang mengarah pada bioinformatika juga telah dilaksanakan oleh mahasiswa program S1 dan pascasarjana Ilmu Komputer maupun program pascasarjana biologi serta bioteknologi IPB.


Riset bioinformatika protein dilaksanakan sebagai bagian dari aktivitas riset rekayasa protein pada Laboratorium Rekayasa Protein, Pusat Penelitian Bioteknologi [[Lembaga Ilmu Pengetahuan Indonesia]] (LIPI), [[Cibinong]], [[Bogor]]. [[Lembaga Biologi Molekul Eijkman]], Jakarta, secara khusus memiliki laboratorium bioinformatika sebagai fasilitas penunjang kegiatan risetnya. Selain itu, basis data sekuens DNA [[mikroorganisme]] asli Indonesia sedang dikembangkan di UI.
Riset bioinformatika protein dilaksanakan sebagai bagian dari aktivitas riset rekayasa protein pada Laboratorium Rekayasa Protein, Pusat Penelitian Bioteknologi [[Lembaga Ilmu Pengetahuan Indonesia]] (LIPI), [[Cibinong]], [[Bogor]]. [[Lembaga Biologi Molekul Eijkman]], Jakarta, secara khusus memiliki laboratorium bioinformatika sebagai fasilitas penunjang kegiatan risetnya. Selain itu, basis data sekuens DNA [[mikroorganisme]] asli Indonesia sedang dikembangkan di UI. Adapun di [http://biofarmaka.ipb.ac.id/ Pusat Studi Biofarmaka Tropika (TropBRC), LPPM, IPB] riset bioinformatika digunakan untuk mendukung riset pengembangan obat dari bahan alam (biofarmaka).


== Lihat pula ==
== Lihat pula ==
* [[Kimia komputasi]]
* [[Kimia komputasi]]
* [[Biochip]]


== Referensi dan bacaan lanjutan ==
== Referensi ==
<references />
* {{en}} Attwood, T.K., dan D.J. Parry-Smith. 1999. ''Introduction to Bioinformatics''. Harlow: Pearson Education. ISBN 0-582-32788-1

* {{en}} Krane, D.E., dan M.L. Raymer. 2003. ''Fundamental Concepts of Bioinformatics''. San Francisco: Benjamin Cummings. ISBN 0-8053-4633-3
== Bacaan lanjutan ==
* {{en}} Mount, D.W. 2001. ''Bioinformatics: Sequence and Genome Analysis''. Cold Spring Harbor: Cold Spring Harbor Laboratory Press. ISBN 0-87969-608-7
* {{en}} {{cite|last1=Attwood|first1=T.K.|first2=D.J.|last2=Parry-Smith|year=1999|title=Introduction to Bioinformatics|location=Harlow|publisher=Pearson Education|isbn=0-582-32788-1}}
* {{en}} {{cite|last1=Krane|first1=D.E.|first2=M.L.|last2=Raymer|year=2003|title=Fundamental Concepts of Bioinformatics|location=San Francisco|publisher=Benjamin Cummings|isbn=0-8053-4633-3}}
* {{en}} {{cite|last=Mount|first=D.W.|year=2001|title=Bioinformatics: Sequence and Genome Analysis|location=Cold Spring Harbor|publisher=Cold Spring Harbor Laboratory Press|isbn=0-87969-608-7}}


== Pranala luar ==
== Pranala luar ==
* {{en}} [http://bioinformatics.org/faq/ Daftar pertanyaan yang sering muncul tentang bioinformatika]
* {{en}} [http://bioinformatics.org/faq/ Daftar pertanyaan yang sering muncul tentang bioinformatika]
* {{id}} [http://ilmukomputer.com/umum/witarto-bioinformatika.php Bioinformatika dan bioteknologi] (oleh Arief B. Witarto, peneliti LIPI)
* {{id}} [http://ilmukomputer.com/umum/witarto-bioinformatika.php Bioinformatika dan bioteknologi]{{Pranala mati|date=Februari 2021 |bot=InternetArchiveBot |fix-attempted=yes }} (oleh Arief B. Witarto, peneliti LIPI)
* {{en}} [http://bioinformatics.oxfordjournals.org/ Jurnal ''Bioinformatics''], salah satu [[jurnal ilmiah]] yang memfokuskan diri pada tema bioinformatika
* {{en}} [http://bioinformatics.oxfordjournals.org/ Jurnal ''Bioinformatics''], salah satu [[jurnal ilmiah]] yang memfokuskan diri pada tema bioinformatika
* {{en}} [http://www.iscb.org/ ''International Society for Computational Biology'' (ISCB)]
* {{en}} [http://www.iscb.org/ ''International Society for Computational Biology'' (ISCB)]
* {{en}} [http://www.apbionet.org/ ''Asia Pacific Bioinformatics Network'' (APBioNet)]
* {{en}} [http://www.apbionet.org/ ''Asia Pacific Bioinformatics Network'' (APBioNet)]
* {{en}} [http://www.usm.maine.edu/%7erhodes/Goodies/Matics.html Tutorial bioinformatika untuk pemula (menggunakan alat-alat bioinformatika yang tersedia di internet)]
* {{en}} [http://www.usm.maine.edu/%7erhodes/Goodies/Matics.html Tutorial bioinformatika untuk pemula (menggunakan alat-alat bioinformatika yang tersedia di Internet)]{{Pranala mati|date=Februari 2021 |bot=InternetArchiveBot |fix-attempted=yes }}
* {{en}} [http://www.s-star.org/download.html/ Download materi bioinformatika (S-Star Bioinformatics Education)]
* {{en}} [http://www.s-star.org/download.html/ Download materi bioinformatika (S-Star Bioinformatics Education)]
* {{en}} [http://planet.bioinformatics.googlepages.com Planet.Bioinformatics | Agregasi blog bioinformatika]
* {{en}} [http://planet.bioinformatics.googlepages.com Planet.Bioinformatics | Agregasi blog bioinformatika]
* {{en}} [http://www.usinglinux.org/biology/ Linux / Unix biology software]
* {{en}} [http://www.usinglinux.org/biology/ Linux / Unix biology software]


{{Biologi nav}}
{{Technology}}
{{Technology}}
{{featured article}}


[[Kategori:Bioinformatika| ]]
[[Kategori:Bioinformatika| ]]
[[Kategori:Ilmu komputasi]]
[[Kategori:Ilmu komputasi]]
[[Kategori:Artikel pilihan bertopik teknologi informasi]]
[[Kategori:Teknologi biomedis]]

[[ar:معلوماتية حيوية]]
[[bg:Биоинформатика]]
[[bn:জৈব তথ্যবিজ্ঞান]]
[[bs:Bioinformatika]]
[[ca:Bioinformàtica]]
[[cs:Bioinformatika]]
[[de:Bioinformatik]]
[[el:Βιοπληροφορική]]
[[en:Bioinformatics]]
[[eo:Biokomputiko]]
[[es:Bioinformática]]
[[et:Bioinformaatika]]
[[fa:بیو‌انفورماتیک]]
[[fi:Bioinformatiikka]]
[[fr:Bio-informatique]]
[[he:ביואינפורמטיקה]]
[[hi:जैव सूचना विज्ञान]]
[[hu:Bioinformatika]]
[[is:Lífupplýsingafræði]]
[[it:Bioinformatica]]
[[ja:バイオインフォマティクス]]
[[jv:Bioinformatika]]
[[kn:ಬಯೋಇನ್‌ಫರ್ಮ್ಯಾಟಿಕ್ಸ್‌]]
[[ko:생물정보학]]
[[la:Informatio genetica]]
[[lb:Bioinformatik]]
[[li:Bioinformatica]]
[[lt:Bioinformatika]]
[[lv:Bioinformātika]]
[[ml:ബയോ-ഇൻഫർമാറ്റിക്സ്‌]]
[[ms:Bioinformasi]]
[[nl:Bio-informatica]]
[[no:Bioinformatikk]]
[[nov:Bioinformatike]]
[[pl:Bioinformatyka]]
[[pt:Bioinformática]]
[[ru:Биоинформатика]]
[[sh:Bioinformatika]]
[[si:ජෛව ‍තොරතුරුවේදය]]
[[simple:Bioinformatics]]
[[sk:Bioinformatika]]
[[sr:Биоинформатика]]
[[sv:Bioinformatik]]
[[ta:உயிர் தகவலியல்]]
[[te:బయోఇన్ఫర్మేటిక్స్]]
[[th:ชีวสารสนเทศศาสตร์]]
[[tr:Biyoenformatik]]
[[uk:Біоінформатика]]
[[ur:معلوماتیۂ حیاتیات]]
[[vi:Tin sinh học]]
[[zh:生物信息学]]

Revisi terkini sejak 6 Oktober 2024 13.26

Penyejajaran sekuens (Sequence alignment), salah satu aplikasi dasar bioinformatika. Sekuens yang dianalisis dalam contoh ini adalah asam amino dari empat protein hemoglobin.

Bioinformatika (bahasa Inggris: bioinformatics) adalah ilmu yang mempelajari penerapan teknik komputasional untuk mengelola dan menganalisis informasi biologis.[1] Bidang ini mencakup penerapan metode-metode matematika, statistika, dan informatika untuk memecahkan masalah-masalah biologis, terutama dengan menggunakan sekuens DNA dan asam amino serta informasi yang berkaitan dengannya. Contoh topik utama bidang ini meliputi basis data untuk mengelola informasi biologis, penyejajaran sekuens (sequence alignment), prediksi struktur untuk meramalkan bentuk struktur protein maupun struktur sekunder RNA, analisis filogenetik, dan analisis ekspresi gen.[2]

Istilah bioinformatics mulai dikemukakan pada pertengahan era 1980-an untuk mengacu pada penerapan komputer dalam biologi. Namun, penerapan bidang-bidang dalam bioinformatika (seperti pembuatan basis data dan pengembangan algoritme untuk analisis sekuens biologis) sudah dilakukan sejak tahun 1960-an.

Kemajuan teknik biologi molekular dalam mengungkap sekuens biologis dari protein (sejak awal 1950-an) dan asam nukleat (sejak 1960-an) mengawali perkembangan basis data dan teknik analisis sekuens biologis. Basis data sekuens protein mulai dikembangkan pada tahun 1960-an di Amerika Serikat, sementara basis data sekuens DNA dikembangkan pada akhir 1970-an di Amerika Serikat dan Jerman (pada European Molecular Biology Laboratory, Laboratorium Biologi Molekular Eropa). Penemuan teknik sekuensing DNA yang lebih cepat pada pertengahan 1970-an menjadi landasan terjadinya ledakan jumlah sekuens DNA yang berhasil diungkapkan pada 1980-an dan 1990-an, menjadi salah satu pembuka jalan bagi proyek-proyek pengungkapan genom, meningkatkan kebutuhan akan pengelolaan dan analisis sekuens, dan pada akhirnya menyebabkan lahirnya bioinformatika.

Perkembangan Internet juga mendukung berkembangnya bioinformatika. Basis data bioinformatika yang terhubung melalui Internet memudahkan ilmuwan mengumpulkan hasil sekuensing ke dalam basis data tersebut maupun memperoleh sekuens biologis sebagai bahan analisis. Selain itu, penyebaran program-program aplikasi bioinformatika melalui Internet memudahkan ilmuwan mengakses program-program tersebut dan kemudian memudahkan pengembangannya.[3]

Penerapan utama bioinformatika

[sunting | sunting sumber]

Basis data sekuens biologis

[sunting | sunting sumber]

Sesuai dengan jenis informasi biologis yang disimpannya, basis data sekuens biologis dapat berupa basis data primer untuk menyimpan sekuens primer asam nukleat maupun protein, basis data sekunder untuk menyimpan motif sekuens protein, dan basis data struktur untuk menyimpan data struktur protein maupun asam nukleat.

Basis data utama untuk sekuens asam nukleat saat ini adalah GenBank (Amerika Serikat), EMBL (Eropa), dan DDBJ(Inggris) (DNA Data Bank of Japan, Jepang). Ketiga basis data tersebut bekerja sama dan bertukar data secara harian untuk menjaga keluasan cakupan masing-masing basis data. Sumber utama data sekuens asam nukleat adalah submisi langsung dari periset individual, proyek sekuensing genom, dan pendaftaran paten. Selain berisi sekuens asam nukleat, entri dalam basis data sekuens asam nukleat umumnya mengandung informasi tentang jenis asam nukleat (DNA atau RNA), nama organisme sumber asam nukleat tersebut, dan pustaka yang berkaitan dengan sekuens asam nukleat tersebut.

Sementara itu, contoh beberapa basis data penting yang menyimpan sekuens primer protein adalah PIR[pranala nonaktif permanen] (Protein Information Resource, Amerika Serikat), Swiss-Prot (Eropa), dan TrEMBL (Eropa). Ketiga basis data tersebut telah digabungkan dalam UniProt (yang didanai terutama oleh Amerika Serikat). Entri dalam UniProt mengandung informasi tentang sekuens protein, nama organisme sumber protein, pustaka yang berkaitan, dan komentar yang umumnya berisi penjelasan mengenai fungsi protein tersebut.[4]

BLAST (Basic Local Alignment Search Tool) merupakan perkakas bioinformatika yang berkaitan erat dengan penggunaan basis data sekuens biologis. Penelusuran BLAST (BLAST search) pada basis data sekuens memungkinkan ilmuwan untuk mencari sekuens asam nukleat maupun protein yang mirip dengan sekuens tertentu yang dimilikinya. Hal ini berguna misalnya untuk menemukan gen sejenis pada beberapa organisme atau untuk memeriksa keabsahan hasil sekuensing maupun untuk memeriksa fungsi gen hasil sekuensing. Algoritme yang mendasari kerja BLAST adalah penyejajaran sekuens.[2]

PDB Diarsipkan 2008-08-28 di Wayback Machine. (Protein Data Bank, Bank Data Protein) adalah basis data tunggal yang menyimpan model struktural tiga dimensi protein[4] dan asam nukleat hasil penentuan eksperimental (dengan kristalografi sinar-X, spektroskopi NMR dan mikroskopi elektron). PDB menyimpan data struktur sebagai koordinat tiga dimensi yang menggambarkan posisi atom-atom dalam protein ataupun asam nukleat.

Penyejajaran sekuens

[sunting | sunting sumber]

Penyejajaran sekuens (sequence alignment) adalah proses penyusunan/pengaturan dua atau lebih sekuens sehingga persamaan sekuens-sekuens tersebut tampak nyata. Hasil dari proses tersebut juga disebut sebagai sequence alignment atau alignment saja.[5] Baris sekuens dalam suatu alignment diberi sisipan (umumnya dengan tanda "–") sedemikian rupa sehingga kolom-kolomnya memuat karakter yang identik atau sama di antara sekuens-sekuens tersebut.

Berikut adalah contoh alignment DNA dari dua sekuens pendek DNA yang berbeda, "ccatcaac" dan "caatgggcaac" (tanda "|" menunjukkan kecocokan atau match di antara kedua sekuens).

 ccat---caac
 | ||   ||||
 caatgggcaac

Sequence alignment merupakan metode dasar dalam analisis sekuens. Metode ini digunakan untuk mempelajari evolusi sekuens-sekuens dari leluhur yang sama (common ancestor). Ketidakcocokan (mismatch, tanda".") dalam alignment diasosiasikan dengan proses mutasi, sedangkan kesenjangan (gap, tanda "–") diasosiasikan dengan proses insersi atau delesi.[5] Sequence alignment memberikan hipotesis atas proses evolusi yang terjadi dalam sekuens-sekuens tersebut. Misalnya, kedua sekuens dalam contoh alignment di atas bisa jadi berevolusi dari sekuens yang sama "ccatgggcaac". Dalam kaitannya dengan hal ini, alignment juga dapat menunjukkan posisi-posisi yang dipertahankan (conserved) selama evolusi dalam sekuens-sekuens protein, yang menunjukkan bahwa posisi-posisi tersebut bisa jadi penting bagi struktur atau fungsi protein tersebut.

Selain itu, sequence alignment juga digunakan untuk mencari sekuens yang mirip atau sama dalam basis data sekuens. BLAST adalah salah satu metode alignment yang sering digunakan dalam penelusuran basis data sekuens. BLAST menggunakan algoritme heuristik dalam penyusunan alignment.

Beberapa metode alignment lain yang merupakan pendahulu BLAST adalah metode "Needleman-Wunsch" dan "Smith-Waterman". Metode Needleman-Wunsch digunakan untuk menyusun alignment global di antara dua atau lebih sekuens, yaitu alignment atas keseluruhan panjang sekuens tersebut dan memperbolehkan adanya gap.[5] Metode Smith-Waterman menghasilkan alignment lokal, yaitu alignment atas bagian-bagian dalam sekuens. Kedua metode tersebut menerapkan pemrograman dinamik (dynamic programming) dan hanya efektif untuk alignment dua sekuens (pairwise alignment)

Clustal adalah program bioinformatika untuk alignment multipel (multiple alignment), yaitu alignment beberapa sekuens sekaligus. Dua varian utama Clustal adalah ClustalW dan ClustalX[pranala nonaktif permanen].

Metode lain yang dapat diterapkan untuk alignment sekuens adalah metode yang berhubungan dengan Hidden Markov Model ("Model Markov Tersembunyi", HMM). HMM merupakan model statistika yang mulanya digunakan dalam ilmu komputer untuk mengenali pembicaraan manusia (speech recognition). Selain digunakan untuk alignment, HMM juga digunakan dalam metode-metode analisis sekuens lainnya, seperti prediksi daerah pengkode protein dalam genom dan prediksi struktur sekunder protein.

Prediksi struktur protein

[sunting | sunting sumber]
Model protein hemaglutinin dari virus influensa

Secara kimia/fisika, bentuk struktur protein diungkap dengan kristalografi sinar-X ataupun spektroskopi NMR, namun kedua metode tersebut sangat memakan waktu dan relatif mahal. Sementara itu, metode sekuensing protein relatif lebih mudah mengungkapkan sekuens asam amino protein.[4] Prediksi struktur protein berusaha meramalkan struktur tiga dimensi protein berdasarkan sekuens asam aminonya (dengan kata lain, meramalkan struktur tersier dan struktur sekunder berdasarkan struktur primer protein). Secara umum, metode prediksi struktur protein yang ada saat ini dapat dikategorikan ke dalam dua kelompok, yaitu metode pemodelan protein komparatif dan metode pemodelan de novo.

Pemodelan protein komparatif (comparative protein modelling) meramalkan struktur suatu protein berdasarkan struktur protein lain yang sudah diketahui. Salah satu penerapan metode ini adalah pemodelan homologi (homology modelling), yaitu prediksi struktur tersier protein berdasarkan kesamaan struktur primer protein. Pemodelan homologi didasarkan pada teori bahwa dua protein yang homolog memiliki struktur yang sangat mirip satu sama lain. Pada metode ini, struktur suatu protein (disebut protein target) ditentukan berdasarkan struktur protein lain (protein templat) yang sudah diketahui dan memiliki kemiripan sekuens dengan protein target tersebut. Selain itu, penerapan lain pemodelan komparatif adalah protein threading yang didasarkan pada kemiripan struktur tanpa kemiripan sekuens primer. Latar belakang protein threading adalah bahwa struktur protein lebih dikonservasi daripada sekuens protein selama evolusi; daerah-daerah yang penting bagi fungsi protein dipertahankan strukturnya. Pada pendekatan ini, struktur yang paling kompatibel untuk suatu sekuens asam amino dipilih dari semua jenis struktur tiga dimensi protein yang ada. Metode-metode yang tergolong dalam protein threading berusaha menentukan tingkat kompatibilitas tersebut.

Dalam pendekatan de novo atau ab initio, struktur protein ditentukan dari sekuens primernya tanpa membandingkan dengan struktur protein lain. Terdapat banyak kemungkinan dalam pendekatan ini, misalnya dengan menirukan proses pelipatan (folding) protein dari sekuens primernya menjadi struktur tersiernya (misalnya dengan simulasi dinamika molekular), atau dengan optimisasi global fungsi energi protein. Prosedur-prosedur ini cenderung membutuhkan proses komputasi yang intens, sehingga saat ini hanya digunakan dalam menentukan struktur protein-protein kecil. Beberapa usaha telah dilakukan untuk mengatasi kekurangan sumber daya komputasi tersebut, misalnya dengan superkomputer (misalnya superkomputer Blue Gene [1] dari IBM) atau komputasi terdistribusi (distributed computing, misalnya proyek Folding@homeDiarsipkan 2012-09-08 di Wayback Machine.) maupun komputasi grid.

Analisis ekspresi gen

[sunting | sunting sumber]
Analisis klastering ekspresi gen pada kanker payudara

Ekspresi gen dapat ditentukan dengan mengukur kadar mRNA dengan berbagai macam teknik (misalnya dengan microarray ataupun Serial Analysis of Gene Expression ["Analisis Serial Ekspresi Gen", SAGE]). Teknik-teknik tersebut umumnya diterapkan pada analisis ekspresi gen skala besar yang mengukur ekspresi banyak gen (bahkan genom) dan menghasilkan data skala besar. Metode-metode penggalian data (data mining) diterapkan pada data tersebut untuk memperoleh pola-pola informatif. Sebagai contoh, metode-metode komparasi digunakan untuk membandingkan ekspresi di antara gen-gen, sementara metode-metode klastering (clustering) digunakan untuk mempartisi data tersebut berdasarkan kesamaan ekspresi gen.

Perangkat lunak

[sunting | sunting sumber]

Terdapat sejumlah perangkat lunak gratis dan sumber terbuka yang telah ada dan terus berkembang sejak 1980-an.[6] Beberapa paket perangkat lunak sumber terbuka yang tersedia, antara lain Bioconductor, BioPerl, Biopython, BioJava, BioJS, BioRuby, Bioclipse, EMBOSS, .NET Bio, Orange, Apache Taverna, UGENE, dan GenoCAD.

Bioinformatika di Indonesia

[sunting | sunting sumber]

Saat ini mata ajaran bioinformatika maupun mata ajaran dengan muatan bioinformatika sudah diajarkan di beberapa perguruan tinggi di Indonesia. Sekolah Ilmu dan Teknologi Hayati ITB menawarkan mata kuliah "Pengantar Bioinformatika" untuk program Sarjana dan mata kuliah "Bioinformatika" untuk program Pascasarjana. Fakultas Matematika dan Ilmu Pengetahuan Alam, IPB menyelenggarakan mata kuliah interdept "Pengantar Bioinformatika" yang wajib diambil oleh mahasiswa program sarjana Ilmu Komputer, Biologi, dan Biokimia. Selain itu pada program pascasarjana Ilmu Komputer, FMIPA, IPB tersedia mata kuliah pilihan "Topik dalam Bioinformatika". Fakultas Teknobiologi Universitas Atma Jaya, Jakarta menawarkan mata kuliah "Pengantar Bioinformatika" sebagai mata kuliah wajib dan "Pemodelan Struktur Protein" sebagai mata kuliah pilihan untuk tingkat program Sarjana. Fakultas Teknobiologi Universitas Atma Jaya Yogyakarta (UAJY) menyertakan Mata Kuliah "Bioinformatika" dalam mata kuliah wajib tingkat program Sarjana. Mata kuliah "Bioinformatika" diajarkan pada Program Pascasarjana Kimia Fakultas MIPA Universitas Indonesia (UI), Jakarta. Mata kuliah "Proteomik dan Bioinformatika" termasuk dalam kurikulum program S3 bioteknologi Universitas Gadjah Mada (UGM), Yogyakarta. Materi bioinformatika termasuk di dalam silabus beberapa mata kuliah untuk program sarjana maupun pascasarjana biokimia,biologi, dan bioteknologi pada Institut Pertanian Bogor (IPB). Selain itu, riset-riset yang mengarah pada bioinformatika juga telah dilaksanakan oleh mahasiswa program S1 dan pascasarjana Ilmu Komputer maupun program pascasarjana biologi serta bioteknologi IPB.

Riset bioinformatika protein dilaksanakan sebagai bagian dari aktivitas riset rekayasa protein pada Laboratorium Rekayasa Protein, Pusat Penelitian Bioteknologi Lembaga Ilmu Pengetahuan Indonesia (LIPI), Cibinong, Bogor. Lembaga Biologi Molekul Eijkman, Jakarta, secara khusus memiliki laboratorium bioinformatika sebagai fasilitas penunjang kegiatan risetnya. Selain itu, basis data sekuens DNA mikroorganisme asli Indonesia sedang dikembangkan di UI. Adapun di Pusat Studi Biofarmaka Tropika (TropBRC), LPPM, IPB riset bioinformatika digunakan untuk mendukung riset pengembangan obat dari bahan alam (biofarmaka).

Lihat pula

[sunting | sunting sumber]

Referensi

[sunting | sunting sumber]
  1. ^ Susilawati dan Bachtiar, N. (2018). Biologi Dasar Terintegrasi (PDF). Pekanbaru: Kreasi Edukasi. hlm. 4. ISBN 978-602-6879-99-8. Diarsipkan (PDF) dari versi asli tanggal 2021-04-15. Diakses tanggal 2021-01-30. 
  2. ^ a b Apsari, Gadis Retno; Adawiyah, Robiah; Linatari, Mey Ayu; Rahmayadi, Dessy; Pradana, Mohammad Syaiful (2023). Bioinformatika: Analisis Pensejajaran Sequence (PDF). Pustaka Ilalang. ISBN 978-602-6715-37-1. 
  3. ^ Subekti, Hasan; Handriyan, Aris; Purnomo, Aris Rudi; Wulandari, Fitria Eka; Widiansyah, Arindra Trisn (2019). BIOTEKNOLOGI: SEBUAH PEMBELAJARAN TERINTEGRASI STEM PADA MATA KULIAH BIOTEKNOLOGI BAGI MAHASISWA CALON GURU IPA. Gresik: Graniti. ISBN 978-602-5811-26-5. 
  4. ^ a b c Pathak, Rajesh Kumar; Singh, Dev Bukhsh; Singh, Rahul (2022). Introduction to basics of bioinformatics. Elsevier. hlm. 1–15. 
  5. ^ a b c Muflikhah, Lailil; Widodo; Mahmudy, Wayan Firdaus; Solimun (2021-07-31). Machine Learning dalam Bioinformatika. Universitas Brawijaya Press. ISBN 978-623-296-122-7. 
  6. ^ "Open Bioinformatics Foundation: About us". Official website. Open Bioinformatics Foundation. Diarsipkan dari versi asli tanggal 2011-05-12. Diakses tanggal 10 May 2011. 

Bacaan lanjutan

[sunting | sunting sumber]
  • (Inggris) Attwood, T.K.; Parry-Smith, D.J. (1999), Introduction to Bioinformatics, Harlow: Pearson Education, ISBN 0-582-32788-1 
  • (Inggris) Krane, D.E.; Raymer, M.L. (2003), Fundamental Concepts of Bioinformatics, San Francisco: Benjamin Cummings, ISBN 0-8053-4633-3 
  • (Inggris) Mount, D.W. (2001), Bioinformatics: Sequence and Genome Analysis, Cold Spring Harbor: Cold Spring Harbor Laboratory Press, ISBN 0-87969-608-7 

Pranala luar

[sunting | sunting sumber]