Biokimia: Perbedaan antara revisi
kTidak ada ringkasan suntingan |
kTidak ada ringkasan suntingan |
||
Baris 2: | Baris 2: | ||
'''Biokimia''' atau '''kimia biologis''', adalah ilmu yang mempelajari [[proses kimia|proses-proses kimia]] yang ada di dalam tubuh dan yang berhubungan dengan [[Makhluk hidup|organisme]] hidup.<ref>{{Cite web|title=Biological/Biochemistry|url=http://www.acs.org/content/acs/en/careers/college-to-career/areas-of-chemistry/biological-biochemistry.html.html|website=acs.org}}</ref> Sebagai subdisiplin dari [[biologi]] dan [[kimia]], biokimia dapat dibagi menjadi tiga bidang: [[Biologi struktur|biologi struktural]], [[enzim]], dan [[metabolisme]]. Selama beberapa dekade terakhir pada abad ke-20, biokimia telah berhasil menjelaskan proses kehidupan melalui tiga subdisiplin ilmu ini. Hampir semua [[Ilmu kehidupan|bidang ilmu hayat]] sedang ditemukan dan dikembangkan melalui metodologi dan penelitian biokimia.<ref name="Voet_2005">[[Biochemistry#Voet|Voet]] (2005), p. 3.</ref> Biokimia berfokus pada pemahaman dasar kimiawi yang memungkinkan [[Biomolekul|molekul biologis]] memunculkan proses-proses yang terjadi di dalam [[Sel (biologi)|sel]] hidup dan di antara sel,<ref name="Karp2009">[[Biochemistry#Karp|Karp]] (2009), p. 2.</ref> yang pada gilirannya berkaitan erat dengan pemahaman [[jaringan]] dan [[Organ (anatomi)|organ]], serta struktur dan fungsi organisme.<ref name="MillerSpoolman2012">[[Biochemistry#Miller|Miller]] (2012). p. 62.</ref> Biokimia berkaitan erat dengan [[biologi molekuler]] yang mempelajari mekanisme [[Molekul|molekuler]] dari fenomena biologi.<ref name="fn_1">[[Biochemistry#Astbury|Astbury]] (1961), p. 1124.</ref> |
'''Biokimia''' atau '''kimia biologis''', adalah ilmu yang mempelajari [[proses kimia|proses-proses kimia]] yang ada di dalam tubuh dan yang berhubungan dengan [[Makhluk hidup|organisme]] hidup.<ref>{{Cite web|title=Biological/Biochemistry|url=http://www.acs.org/content/acs/en/careers/college-to-career/areas-of-chemistry/biological-biochemistry.html.html|website=acs.org}}</ref> Sebagai subdisiplin dari [[biologi]] dan [[kimia]], biokimia dapat dibagi menjadi tiga bidang: [[Biologi struktur|biologi struktural]], [[enzim]], dan [[metabolisme]]. Selama beberapa dekade terakhir pada abad ke-20, biokimia telah berhasil menjelaskan proses kehidupan melalui tiga subdisiplin ilmu ini. Hampir semua [[Ilmu kehidupan|bidang ilmu hayat]] sedang ditemukan dan dikembangkan melalui metodologi dan penelitian biokimia.<ref name="Voet_2005">[[Biochemistry#Voet|Voet]] (2005), p. 3.</ref> Biokimia berfokus pada pemahaman dasar kimiawi yang memungkinkan [[Biomolekul|molekul biologis]] memunculkan proses-proses yang terjadi di dalam [[Sel (biologi)|sel]] hidup dan di antara sel,<ref name="Karp2009">[[Biochemistry#Karp|Karp]] (2009), p. 2.</ref> yang pada gilirannya berkaitan erat dengan pemahaman [[jaringan]] dan [[Organ (anatomi)|organ]], serta struktur dan fungsi organisme.<ref name="MillerSpoolman2012">[[Biochemistry#Miller|Miller]] (2012). p. 62.</ref> Biokimia berkaitan erat dengan [[biologi molekuler]] yang mempelajari mekanisme [[Molekul|molekuler]] dari fenomena biologi.<ref name="fn_1">[[Biochemistry#Astbury|Astbury]] (1961), p. 1124.</ref> |
||
Sebagian besar biokimia berhubungan dengan struktur, fungsi, dan interaksi [[makromolekul]] biologis, seperti [[protein]], [[asam nukleat]], [[karbohidrat]], dan [[lipid]]. Molekul-molekul ini membangun struktur sel dan melakukan banyak fungsi yang berhubungan dengan kehidupan.<ref name="Biology">[[Biochemistry#Eldra|Eldra]] (2007), p. 45.</ref> Sifat kimiawi sel juga bergantung pada reaksi [[molekul]] dan [[Ion|ion kecil]]. Mereka dapat berupa [[Senyawa anorganik|anorganik]] (misalnya [[air]] dan ion[[logam]]) atau [[Senyawa organik|organik]] (misalnya [[asam amino]] yang digunakan untuk [[Sintesis protein|menyintesis protein]]).<ref name="Marks">[[Biochemistry#Marks|Marks]] (2012), Chapter 14.</ref> Mekanisme yang digunakan oleh [[Respirasi seluler|sel untuk memanfaatkan energi]] dari lingkungannya melalui [[reaksi kimia]] dikenal sebagai [[metabolisme]]. Temuan biokimia diterapkan terutama di [[Kedokteran|bidang kedokteran]], [[nutrisi]], dan [[pertanian]]. Dalam pengobatan, ahli biokimia menyelidiki penyebab dan [[Medikasi|penyembuhan]] [[penyakit]].<ref>[[Biochemistry#Finkel|Finkel]] (2009), pp. 1–4.</ref> Ilmu gizi mempelajari bagaimana menjaga kesehatan dan kebugaran serta pengaruh dari [[Malnutrisi|kekurangan gizi]].<ref name="FFL2010">[[Biochemistry#UNICEF|UNICEF]] (2010), pp. 61, 75.</ref> Di bidang pertanian, ahli biokimia menyelidiki [[tanah]] dan [[pupuk]]. Meningkatkan budidaya tanaman, penyimpanan tanaman, serta [[pengendalian hama]] juga merupakan tujuan biokimia. |
Sebagian besar biokimia berhubungan dengan struktur, fungsi, dan interaksi [[makromolekul]] biologis, seperti [[protein]], [[asam nukleat]], [[karbohidrat]], dan [[lipid]]. Molekul-molekul ini membangun struktur sel dan melakukan banyak fungsi yang berhubungan dengan kehidupan.<ref name="Biology">[[Biochemistry#Eldra|Eldra]] (2007), p. 45.</ref> Sifat kimiawi sel juga bergantung pada reaksi [[molekul]] dan [[Ion|ion kecil]]. Mereka dapat berupa senyawa [[Senyawa anorganik|anorganik]] (misalnya [[air]] dan ion [[logam]]) atau [[Senyawa organik|organik]] (misalnya [[asam amino]] yang digunakan untuk [[Sintesis protein|menyintesis protein]]).<ref name="Marks">[[Biochemistry#Marks|Marks]] (2012), Chapter 14.</ref> Mekanisme yang digunakan oleh [[Respirasi seluler|sel untuk memanfaatkan energi]] dari lingkungannya melalui [[reaksi kimia]] dikenal sebagai [[metabolisme]]. Temuan biokimia diterapkan terutama di [[Kedokteran|bidang kedokteran]], [[nutrisi]], dan [[pertanian]]. Dalam pengobatan, ahli biokimia menyelidiki penyebab dan [[Medikasi|penyembuhan]] [[penyakit]].<ref>[[Biochemistry#Finkel|Finkel]] (2009), pp. 1–4.</ref> Ilmu gizi mempelajari bagaimana menjaga kesehatan dan kebugaran serta pengaruh dari [[Malnutrisi|kekurangan gizi]].<ref name="FFL2010">[[Biochemistry#UNICEF|UNICEF]] (2010), pp. 61, 75.</ref> Di bidang pertanian, ahli biokimia menyelidiki [[tanah]] dan [[pupuk]]. Meningkatkan budidaya tanaman, penyimpanan tanaman, serta [[pengendalian hama]] juga merupakan tujuan penerapan biokimia. |
||
== Sejarah == |
== Sejarah == |
||
[[Berkas:Gerty_Theresa_Radnitz_Cori_(1896-1957)_and_Carl_Ferdinand_Cori.jpg|pra=https://wiki-indonesia.club/wiki/Berkas:Gerty_Theresa_Radnitz_Cori_(1896-1957)_and_Carl_Ferdinand_Cori.jpg|jmpl|[[Gerty Cori]] dan [[Carl Cori]] bersama-sama memenangkan [[Penghargaan Nobel Fisiologi atau Kedokteran|Hadiah Nobel]] pada tahun 1947 atas penemuan [[siklus Cori]] mereka di RPMI.]] |
[[Berkas:Gerty_Theresa_Radnitz_Cori_(1896-1957)_and_Carl_Ferdinand_Cori.jpg|pra=https://wiki-indonesia.club/wiki/Berkas:Gerty_Theresa_Radnitz_Cori_(1896-1957)_and_Carl_Ferdinand_Cori.jpg|jmpl|[[Gerty Cori]] dan [[Carl Cori]] bersama-sama memenangkan [[Penghargaan Nobel Fisiologi atau Kedokteran|Hadiah Nobel]] pada tahun 1947 atas penemuan [[siklus Cori]] mereka di RPMI.]] |
||
Menurut definisi yang paling komprehensif, biokimia dapat dilihat sebagai studi tentang komponen dan komposisi makhluk hidup dan bagaimana mereka bersatu dan bekerja sama menjadi bentuk kehidupan. Dalam pengertian ini, sejarah biokimia dapat berasal dari [[Yunani Kuno|zaman Yunani kuno]].<ref name="history of science">[[Biochemistry#Helvoort|Helvoort]] (2000), p. 81.</ref> Namun, biokimia sebagai [[Cabang-cabang ilmu pengetahuan sains|disiplin ilmu]] yang spesifik dimulai sekitar abad ke-19, atau lebih awal, bergantung pada aspek biokimia mana yang difokuskan. Beberapa orang berpendapat bahwa biokimia mungkin dimulai sejak penemuan molekul [[enzim]] yang pertama, yaitu [[diastase]] (sekarang disebut [[amilase]]), pada tahun 1833 oleh [[Anselme Payen]],<ref>[[Biochemistry#Hunter|Hunter]] (2000), p. 75.</ref> sementara yang lain menganggap demonstrasi [[Eduard Buchner]] mengenai proses biokimia kompleks pertama, yaitu [[Fermentasi etanol|fermentasi alkohol]] pada ekstrak yang bebas-sel pada tahun 1897 |
Menurut definisi yang paling komprehensif, biokimia dapat dilihat sebagai studi tentang komponen dan komposisi makhluk hidup dan bagaimana mereka bersatu dan bekerja sama menjadi bentuk kehidupan. Dalam pengertian ini, sejarah biokimia dapat berasal dari [[Yunani Kuno|zaman Yunani kuno]].<ref name="history of science">[[Biochemistry#Helvoort|Helvoort]] (2000), p. 81.</ref> Namun, biokimia sebagai [[Cabang-cabang ilmu pengetahuan sains|disiplin ilmu]] yang spesifik dimulai sekitar abad ke-19, atau lebih awal, bergantung pada aspek biokimia mana yang difokuskan. Beberapa orang berpendapat bahwa biokimia mungkin dimulai sejak penemuan molekul [[enzim]] yang pertama, yaitu [[diastase]] (sekarang disebut [[amilase]]), pada tahun 1833 oleh [[Anselme Payen]],<ref>[[Biochemistry#Hunter|Hunter]] (2000), p. 75.</ref> sementara yang lain menganggap demonstrasi [[Eduard Buchner]] mengenai proses biokimia kompleks pertama, yaitu [[Fermentasi etanol|fermentasi alkohol]] pada ekstrak yang bebas-sel pada tahun 1897 sebagai tanda kelahiran biokimia.<ref>[[Biochemistry#Hamblin|Hamblin]] (2005), p. 26.</ref><ref>[[Biochemistry#Hunter|Hunter]] (2000), pp. 96–98.</ref> Beberapa orang juga mungkin menunjuk karya berpengaruh yang terbit pada tahun 1842 oleh [[Justus Liebig|Justus von Liebig]], ''Kimia hewan, atau, Kimia organik dalam aplikasinya pada fisiologi dan patologi'', yang mempresentasikan teori kimia tentang metabolisme, sebagai permulaan dari biokimia,<ref name="history of science" /> atau bahkan sejak studi abad ke-18 tentang [[fermentasi]] dan [[Respirasi seluler|respirasi]] oleh [[Antoine Lavoisier]].<ref>[[Biochemistry#Berg|Berg]] (1980), pp. 1–2.</ref><ref>[[Biochemistry#Holmes|Holmes]] (1987), p. xv.</ref> Banyak pionir lain disebut sebagai pendiri biokimia modern karena membantu mengungkap kompleksitas biokimia. [[Emil Fischer]], yang mempelajari kimia protein,<ref>[[Biochemistry#Feldman|Feldman]] (2001), p. 206.</ref> dan [[Frederick Gowland Hopkins|F. Gowland Hopkins]], yang mempelajari enzim dan sifat dinamis biokimia, mewakili dua contoh ahli biokimia awal.<ref>[[Biochemistry#Rayner|Rayner-Canham]] (2005), p. 136.</ref> |
||
Istilah "biokimia" sendiri berasal dari gabungan antara [[biologi]] dan [[kimia]]. Pada tahun 1877, [[Felix Hoppe-Seyler]] menggunakan istilah ini (''biochemie'' dalam bahasa Jerman) sebagai sinonim untuk [[Biokimia|kimia fisiologis]] dalam kata pengantar untuk edisi pertama ''[[Biological Chemistry|Zeitschrift für Physiologische Chemie]]'' (Jurnal Kimia Fisiologis) ketika ia menyarankan untuk mendirikan lembaga yang didedikasikan untuk bidang studi ini.<ref>[[Biochemistry#Ziesak|Ziesak]] (1999), p. 169.</ref><ref>[[Biochemistry#Kleinkauf|Kleinkauf]] (1988), p. 116.</ref> Ahli [[Kimiawan|kimia]] Jerman [[Carl Neuberg]] sering dikutip bahwa telah menciptakan kata tersebut pada tahun 1903,<ref name="Ben-Menahem 2009">[[Biochemistry#Ben|Ben-Menahem]] (2009), p. 2982.</ref><ref>[[Biochemistry#Amsler|Amsler]] (1986), p. 55.</ref><ref>[[Biochemistry#Horton|Horton]] (2013), p. 36.</ref> sementara beberapa orang lain mengkreditkannya ke [[Franz Hofmeister]].<ref>[[Biochemistry#Kleinkauf|Kleinkauf]] (1988), p. 43.</ref> |
Istilah "biokimia" sendiri berasal dari gabungan antara [[biologi]] dan [[kimia]]. Pada tahun 1877, [[Felix Hoppe-Seyler]] menggunakan istilah ini (''biochemie'' dalam bahasa Jerman) sebagai sinonim untuk [[Biokimia|kimia fisiologis]] dalam kata pengantar untuk edisi pertama ''[[Biological Chemistry|Zeitschrift für Physiologische Chemie]]'' (Jurnal Kimia Fisiologis) ketika ia menyarankan untuk mendirikan lembaga yang didedikasikan untuk bidang studi ini.<ref>[[Biochemistry#Ziesak|Ziesak]] (1999), p. 169.</ref><ref>[[Biochemistry#Kleinkauf|Kleinkauf]] (1988), p. 116.</ref> Ahli [[Kimiawan|kimia]] Jerman [[Carl Neuberg]] sering dikutip bahwa telah menciptakan kata tersebut pada tahun 1903,<ref name="Ben-Menahem 2009">[[Biochemistry#Ben|Ben-Menahem]] (2009), p. 2982.</ref><ref>[[Biochemistry#Amsler|Amsler]] (1986), p. 55.</ref><ref>[[Biochemistry#Horton|Horton]] (2013), p. 36.</ref> sementara beberapa orang lain mengkreditkannya ke [[Franz Hofmeister]].<ref>[[Biochemistry#Kleinkauf|Kleinkauf]] (1988), p. 43.</ref> |
||
[[Berkas:DNA_orbit_animated.gif|pra=https://wiki-indonesia.club/wiki/Berkas:DNA_orbit_animated.gif|kiri|jmpl|Struktur DNA (1D65) <ref>[[Biochemistry#Edwards|Edwards]] (1992), pp. 1161–1173.</ref>]] |
[[Berkas:DNA_orbit_animated.gif|pra=https://wiki-indonesia.club/wiki/Berkas:DNA_orbit_animated.gif|kiri|jmpl|Struktur DNA (1D65) <ref>[[Biochemistry#Edwards|Edwards]] (1992), pp. 1161–1173.</ref>]] |
||
Pada awalnya, orang-orang secara umum memercayai bahwa kehidupan dan materialnya memiliki beberapa sifat atau substansi esensial (yang sering disebut sebagai "[[Vitalisme|prinsip vital]]") yang berbeda dari materi yang ditemukan pada benda tak hidup, dan |
Pada awalnya, orang-orang secara umum memercayai bahwa kehidupan dan materialnya memiliki beberapa sifat atau substansi esensial (yang sering disebut sebagai "[[Vitalisme|prinsip vital]]") yang berbeda dari materi yang ditemukan pada benda tak hidup, dan menganggap bahwa hanya makhluk hidup yang dapat menghasilkan molekul kehidupan (senyawa organik).<ref>[[Biochemistry#Fiske|Fiske]] (1890), pp. 419–20.</ref> Pada tahun 1828, [[Friedrich Wöhler]] menerbitkan tulisan tentang [[Sintesis Wöhler|sintesis]] [[urea]], yang membuktikan bahwa senyawa [[Kimia organik|organik]] dapat dibuat secara artifisial.<ref name="Kauffman 2001">[[Biochemistry#Kauffman|Kauffman]] (2001), pp. 121–133.</ref> Sejak itu, biokimia mulai maju, terutama sejak pertengahan abad ke-20 dengan perkembangan teknik baru seperti [[kromatografi]], [[Kristalografi sinar-X|difraksi sinar-X]], [[interferometri polarisasi ganda]], [[Spektroskopi resonansi magnetik inti|spektroskopi NMR]], [[pelabelan radioisotop]], [[mikroskop elektron]], dan simulasi [[dinamika molekuler]]. Teknik-teknik ini memungkinkan penemuan dan analisis yang lebih mendalam dari berbagai molekul dan [[Lintasan metabolisme|jalur metabolisme]] [[Sel (biologi)|sel]], seperti [[glikolisis]] dan [[Siklus asam sitrat|siklus Krebs]] (siklus asam sitrat), serta mengarah pada pemahaman tentang biokimia pada tingkat molekuler. Perkembangan ilmu baru seperti [[bioinformatika]] juga banyak membantu dalam peramalan dan pemodelan struktur [[molekul raksasa]]. |
||
Peristiwa bersejarah penting lainnya dalam biokimia adalah penemuan [[gen]] |
Peristiwa bersejarah penting lainnya dalam biokimia adalah penemuan [[gen]] dan perannya dalam mentransfer informasi di dalam sel. Pada tahun 1950-an, [[James Dewey Watson|James D. Watson]], [[Francis Crick]], [[Rosalind Franklin]], dan [[Maurice Wilkins]] berperan penting dalam penemuan struktur DNA dan menunjukkan hubungannya dengan transfer informasi genetik.<ref>[[Biochemistry#Tropp|Tropp]] (2012), pp. 19–20.</ref> Pada tahun 1958, [[George Beadle]] dan [[Edward Tatum]] menerima [[Penghargaan Nobel|Hadiah Nobel]] atas penelitian mereka mengenai fungi yang menunjukkan bahwa [[Hipotesis satu gen-satu enzim|satu gen menghasilkan satu enzim]].<ref name="Krebs 2012">[[Biochemistry#Krebs|Krebs]] (2012), p. 32.</ref> Pada tahun 1988, [[Colin Pitchfork]] adalah orang pertama yang terbukti melakukan pembunuhan dengan digunakannya [[Asam deoksiribonukleat|DNA]] sebagai alat bukti, yang mendorong perkembangan [[ilmu forensik]].<ref name="Butler 2009">[[Biochemistry#Butler|Butler]] (2009), p. 5.</ref> Belum lama ini, [[Andrew Z. Fire]] dan [[Craig C. Mello]] menerima [[Penghargaan Nobel Fisiologi atau Kedokteran|Hadiah Nobel 2006]] untuk menemukan peran [[interferensi RNA]] ([[Interferensi RNA|RNAi]]) dalam membungkam [[ekspresi gen]].<ref name="Sen 2007">[[Biochemistry#Chandan|Chandan]] (2007), pp. 193–194.</ref> |
||
== Biomolekul == |
== Biomolekul == |
Revisi per 7 Desember 2020 06.15
Bagian dari seri |
Ilmu Pengetahuan |
---|
Biokimia atau kimia biologis, adalah ilmu yang mempelajari proses-proses kimia yang ada di dalam tubuh dan yang berhubungan dengan organisme hidup.[1] Sebagai subdisiplin dari biologi dan kimia, biokimia dapat dibagi menjadi tiga bidang: biologi struktural, enzim, dan metabolisme. Selama beberapa dekade terakhir pada abad ke-20, biokimia telah berhasil menjelaskan proses kehidupan melalui tiga subdisiplin ilmu ini. Hampir semua bidang ilmu hayat sedang ditemukan dan dikembangkan melalui metodologi dan penelitian biokimia.[2] Biokimia berfokus pada pemahaman dasar kimiawi yang memungkinkan molekul biologis memunculkan proses-proses yang terjadi di dalam sel hidup dan di antara sel,[3] yang pada gilirannya berkaitan erat dengan pemahaman jaringan dan organ, serta struktur dan fungsi organisme.[4] Biokimia berkaitan erat dengan biologi molekuler yang mempelajari mekanisme molekuler dari fenomena biologi.[5]
Sebagian besar biokimia berhubungan dengan struktur, fungsi, dan interaksi makromolekul biologis, seperti protein, asam nukleat, karbohidrat, dan lipid. Molekul-molekul ini membangun struktur sel dan melakukan banyak fungsi yang berhubungan dengan kehidupan.[6] Sifat kimiawi sel juga bergantung pada reaksi molekul dan ion kecil. Mereka dapat berupa senyawa anorganik (misalnya air dan ion logam) atau organik (misalnya asam amino yang digunakan untuk menyintesis protein).[7] Mekanisme yang digunakan oleh sel untuk memanfaatkan energi dari lingkungannya melalui reaksi kimia dikenal sebagai metabolisme. Temuan biokimia diterapkan terutama di bidang kedokteran, nutrisi, dan pertanian. Dalam pengobatan, ahli biokimia menyelidiki penyebab dan penyembuhan penyakit.[8] Ilmu gizi mempelajari bagaimana menjaga kesehatan dan kebugaran serta pengaruh dari kekurangan gizi.[9] Di bidang pertanian, ahli biokimia menyelidiki tanah dan pupuk. Meningkatkan budidaya tanaman, penyimpanan tanaman, serta pengendalian hama juga merupakan tujuan penerapan biokimia.
Sejarah
Menurut definisi yang paling komprehensif, biokimia dapat dilihat sebagai studi tentang komponen dan komposisi makhluk hidup dan bagaimana mereka bersatu dan bekerja sama menjadi bentuk kehidupan. Dalam pengertian ini, sejarah biokimia dapat berasal dari zaman Yunani kuno.[10] Namun, biokimia sebagai disiplin ilmu yang spesifik dimulai sekitar abad ke-19, atau lebih awal, bergantung pada aspek biokimia mana yang difokuskan. Beberapa orang berpendapat bahwa biokimia mungkin dimulai sejak penemuan molekul enzim yang pertama, yaitu diastase (sekarang disebut amilase), pada tahun 1833 oleh Anselme Payen,[11] sementara yang lain menganggap demonstrasi Eduard Buchner mengenai proses biokimia kompleks pertama, yaitu fermentasi alkohol pada ekstrak yang bebas-sel pada tahun 1897 sebagai tanda kelahiran biokimia.[12][13] Beberapa orang juga mungkin menunjuk karya berpengaruh yang terbit pada tahun 1842 oleh Justus von Liebig, Kimia hewan, atau, Kimia organik dalam aplikasinya pada fisiologi dan patologi, yang mempresentasikan teori kimia tentang metabolisme, sebagai permulaan dari biokimia,[10] atau bahkan sejak studi abad ke-18 tentang fermentasi dan respirasi oleh Antoine Lavoisier.[14][15] Banyak pionir lain disebut sebagai pendiri biokimia modern karena membantu mengungkap kompleksitas biokimia. Emil Fischer, yang mempelajari kimia protein,[16] dan F. Gowland Hopkins, yang mempelajari enzim dan sifat dinamis biokimia, mewakili dua contoh ahli biokimia awal.[17]
Istilah "biokimia" sendiri berasal dari gabungan antara biologi dan kimia. Pada tahun 1877, Felix Hoppe-Seyler menggunakan istilah ini (biochemie dalam bahasa Jerman) sebagai sinonim untuk kimia fisiologis dalam kata pengantar untuk edisi pertama Zeitschrift für Physiologische Chemie (Jurnal Kimia Fisiologis) ketika ia menyarankan untuk mendirikan lembaga yang didedikasikan untuk bidang studi ini.[18][19] Ahli kimia Jerman Carl Neuberg sering dikutip bahwa telah menciptakan kata tersebut pada tahun 1903,[20][21][22] sementara beberapa orang lain mengkreditkannya ke Franz Hofmeister.[23]
Pada awalnya, orang-orang secara umum memercayai bahwa kehidupan dan materialnya memiliki beberapa sifat atau substansi esensial (yang sering disebut sebagai "prinsip vital") yang berbeda dari materi yang ditemukan pada benda tak hidup, dan menganggap bahwa hanya makhluk hidup yang dapat menghasilkan molekul kehidupan (senyawa organik).[25] Pada tahun 1828, Friedrich Wöhler menerbitkan tulisan tentang sintesis urea, yang membuktikan bahwa senyawa organik dapat dibuat secara artifisial.[26] Sejak itu, biokimia mulai maju, terutama sejak pertengahan abad ke-20 dengan perkembangan teknik baru seperti kromatografi, difraksi sinar-X, interferometri polarisasi ganda, spektroskopi NMR, pelabelan radioisotop, mikroskop elektron, dan simulasi dinamika molekuler. Teknik-teknik ini memungkinkan penemuan dan analisis yang lebih mendalam dari berbagai molekul dan jalur metabolisme sel, seperti glikolisis dan siklus Krebs (siklus asam sitrat), serta mengarah pada pemahaman tentang biokimia pada tingkat molekuler. Perkembangan ilmu baru seperti bioinformatika juga banyak membantu dalam peramalan dan pemodelan struktur molekul raksasa.
Peristiwa bersejarah penting lainnya dalam biokimia adalah penemuan gen dan perannya dalam mentransfer informasi di dalam sel. Pada tahun 1950-an, James D. Watson, Francis Crick, Rosalind Franklin, dan Maurice Wilkins berperan penting dalam penemuan struktur DNA dan menunjukkan hubungannya dengan transfer informasi genetik.[27] Pada tahun 1958, George Beadle dan Edward Tatum menerima Hadiah Nobel atas penelitian mereka mengenai fungi yang menunjukkan bahwa satu gen menghasilkan satu enzim.[28] Pada tahun 1988, Colin Pitchfork adalah orang pertama yang terbukti melakukan pembunuhan dengan digunakannya DNA sebagai alat bukti, yang mendorong perkembangan ilmu forensik.[29] Belum lama ini, Andrew Z. Fire dan Craig C. Mello menerima Hadiah Nobel 2006 untuk menemukan peran interferensi RNA (RNAi) dalam membungkam ekspresi gen.[30]
Biomolekul
Ada empat kelas molekul utama dalam biokimia yaitu: karbohidrat, lipid, protein, dan asam nukleat. Banyak molekul biologi merupakan "polimer": dalam kasus ini, monomer adalah mikromolekul yang relatif kecil yang bergabung menjadi satu untuk membentuk makromolekul-makromolekul, yang kemudian disebut sebagai "polimer". Ketika banyak monomer bergabung untuk mensintesis sebuah polimer biologis, mereka melalui proses yang disebut dengan sintesis dehidrasi.
Karbohidrat
Karbohidrat tersusun dari monomer yang disebut sebagai monosakarida. Contoh dari monosakarida adalah glukosa (C6H12O6), fruktosa (C6H12O6), dan deoksiribosa (C5H10O4). Ketika dua monosakarida melalui proses sintesis dehidrasi, maka air akan terbentuk, karena dua atom hidrogen dan satu atom oksigen telepas dari dua gugus hidroksil monosakarida.
Lipid
Lipid biasanya terbentuk dari satu molekul gliserol yang bergabung dengan molekul lain. Pada trigliserida, ada satu mol gliserol dan tiga molekul asam lemak. Dalam hal ini, asam lemak merupakan monomer.
Lipid, terutama fosfolipid, juga digunakan di beberapa produk obat-obatan, misalnya sebagai bahan pelarut (contohnya di infus parenteral) atau sebagai komponen pembawa obat (contohnya di liposom atau transfersom).
Protein
Protein merupakan molekul yang sangat besar-atau makrobiopolimer- yang tersusun dari monomer yang disebut asam amino. Ada 20 asam amino standar, yang masing-masing terdiri dari sebuah gugus karboksil, sebuah gugus amino, dan rantai samping (disebut sebagai gugus "R"). Gugus "R" ini yang menjadikan setiap asam amino berbeda, dan ciri-ciri dari rantai samping ini akan berpengaruh keseluruhan terhadap suatu protein. Ketika asam amino bergabung, mereka membentuk ikatan khusus yang disebut ikatan peptida melalui sintesis dehidrasi, dan menjadi Polipeptida, atau protein.
Asam nukleat
Asam nukleat adalah molekul yang membentuk DNA, substansi yang sangat penting yang digunakan oleh semua organisme seluler untuk menyimpan informasi genetik. Jenis asam nukleat yang paling umum adalah asam deoksiribosa nukleat (DNA) dan asam ribonukleat (RNA). Monomernya disebut nukleotida. Nukleotida yang paling umum diantaranya adenin, sitosin, guanin, timin, dan urasil. Adenin berpasangan dengan timin dan urasil, timin hanya berpasangan dengan adenin; sitosin dan guanin hanya dapat berpasangan satu sama lain.
Karbohidrat
Fungsi dari karbohidrat adalah sebagai pembangun dan sumber energi. Gula merupakan karbohidrat, tetapi tidak semua karbohidrat adalah gula. Jumlah karbohidrat di bumi lebih banyak daripada jumlah biomolekul manapun.
Monosakarida
Tipe karbohidrat yang paling sederhana adalah monosakarida, yang biasanya terdiri dari atom karbon, hidrogen, dan oksigen, kebanyakan dengan perbandingan 1:2:1 (formula umumnya CnH2nOn, di mana n paling kecil adalah 3). Glukosa, salah satu karbohidrat yang paling penting, merupakan contoh dari monosakarida. Juga termasuk dengan fruktosa, gula yang biasanya ditemukan dalam manisnya buah-buahan.[31][a] Beberapa karbohidrat (terutama setelah kondensasi menjadi oligo- dan polisakarida) memiliki jumlah karbon yang relatif lebih rendah daripada H dan O. Monosakarida dapat dikelompokkan ke aldosa (mempunyai grup aldehida di akhir rantainya, contohnya glukosa) dan ketosa (mempunyai grup keton di rantainya, contohnya fruktosa).
Disakarida
Dua monosakarida dapat bergabung menjadi satu melalui sintesis dehidrasi. Maka, akan dilepaskan satu atom hidrogen dan satu grup hidroksil (OH-). Atom hidrogen dan hidroksil akan bergabung dan membentuk molekul air (H-OH atau H2O), maka dari itu disebut "dehidrasi". Molekul baru ini disebut "disakarida". Reaksinya pun bisa berbalik arah (reaksi pemecahan), dengan menggunakan satu molekul air untuk memecah satu molekul disakarida, maka akan memecah ikatan glikosidik pada disakarida. Reaksi inilah yang disebut dengan hidrolisis. Jenis disakarida yang paling dikenal adalah sukrosa atau yang biasanya kita kenal dengan gula tebu. Satu molekul sukrosa terdiri dari satu molekul glukosa dan satu molekul fruktosa. Disakarida yang lain contohnya laktosa, terdiri dari satu molekul glukosa dan satu molekul galaktosa. Di dalam tubuh, dikenal adanya enzim laktase yang memecah laktosa menjadi glukosa dan galaktosa. Biasanya, pada orang berusia lanjut, produksi laktase semakin sedikit dan akibatnya adalah penyakit intoleransi laktosa.
Oligosakarida dan polisakarida
Ketika beberapa (sekitar 3-6) monosakarida bergabung menjadi satu, maka akan disebut sebagai oligosakarida (oligo- artinya "sedikit"). Jika banyak monosakarida bergabung menjadi satu, maka akan disebut sebagai polisakarida. Monosakarida dapat bergabunf membentuk satu rantai panjang, atau mungkin bercabang-cabang. 2 jenis polisakarida yang paling dikenal adalah selulosa dan glikogen, dua-duanya terdiri dari monomer glukosa.
- Selulosa dibuat oleh tumbuhan dan merupakan komponen penting yang membentuk dinding sel. Manusia tidak bisa membuat ataupun mencerna selulosa.
- Glikogen, atau nama lainnya adalah gula otot, digunakan oleh manusia dan hewan sebagai sumber energi.
Penggunaan karbohidat sebagai sumber energi
Glukosa merupakan sumber energi utama bagi makhluk hidup. Contohnya, polisakarida akan dipecah menjadi monomer-monomernya (fosforilase glikogen akan membuang residu glukosa dari glikogen). Disakarida seperti laktosa atau sukrosa akan dipecah menjadi 2 komponen monosakaridanya.
Glikolisis (anaerob)
Glukosa akan dicerna dalam tubuh dalam reaksi respirasi. Tahapan pertama dalam reaksi respirasi adalah glikolisis. Tahapan glikolisis dimulai dari satu molekul glukosa sampai tahap akhirnya akan dihasilkan 2 molekul piruvat. Tahap ini juga akan menghasilkan 2 ATP dan memberikan dua elektron dan satu hidrogen pada NAD+ sehingga menjadi NADH. Tahap ini tidak membutuhkan oksigen. Jika persediaan oksigen dalam tubuh tidak cukup, maka NADH akan digunakan untuk mengubah piruvat menjadi asam laktat (dalam tubuh manusia]] atau menjadi etanol dan karbon dioksida.
Aerob
Dalam respirasi aerob, sel yang mendapat cukup oksigen, piruvat yang dihasilkan dari tahap glikolisis akan dicerna kembali dan diubah menjadi Asetil Ko-A. Piruvat akan membuang satu atom karbonnya (menjadi karbon dioksida) dan akan memberikan elektronnya lagi pada NAD+ sehingga menjadi NADH. 2 molekul Asetil Ko-A akan memasuki tahap siklus Krebs, dan akan menghasilkan lagi 2 ATP, 6 molekul NADH, dan 2 ubiquinon (FADH2), serta karbon dioksida. Energi di NADH dan FADH2 nantinya akan digunakan di transpor elektron. Energi ini dipakai dengan cara dilepaskannya elektron dan H+ dari NADH dan FADH2 secara bertahap di sistem transpor elektron. Sistem transpor elektron akan memompa H+ keluar dari membran dalam mitokondria. Konsentrasi H+ di luar membran dalam mitokondria akan menyebabkan gradien proton, sehingga H+ akan masuk kembali ke membran dalam mitokondria melalui ATP sintase. Oksigen bertugas sebagai penerima elektron akhir, sehingga proses pembentukan ATP terus berlanjut. Oksigen yang bergabung dengan H+ akan membentuk air. NAD+ dan FAD akan digunakan kembali dalam sistem respirasi, seperti yang telah dijelaskan sebelumnya. Hal ini yang menyebabkan mengapa kita menghirup oksigen dan melepaskan karbon dioksida. Dalam 1 molekul glukosa akan dihasilkan total 36 ATP, dan satu ATP dapat melepaskan 7,3 kilokalori.
Glukoneogenesis
Dalam tubuh vertebrata, otot lurik yang dipaksa bekerja keras (misalnya saat angkat beban atau lari), tidak akan mendapatkan oksigen yang cukup sehingga akan melakukan metabolisme anaerob, maka akan mengubah glukosa menjadi asam laktat. Organ hati akan menghasilkan kembali glukosa tersebut, melalui proses yang dinamakan glukoneogenesis. Proses glukoneogenesis sebenarnya membutuhkan energi 3 kali lebih banyak daripada yang dihasilkan dalam proses glikolisis (ada 6 ATP yang dibuat, sedangkan glikolisis hanya menghasilkan 2 ATP).
Protein
Seperti karbohidrat, beberapa protein juga memiliki fungsi vital dalam tubuh. Contohnya, pergerakan dari protein aktin dan miosin sangat berperan bagi kontraksi otot lurik. Salah satu ciri dari kebanyakan protein adalah mereka hanya dapat mengikat secara spesifik, hanya satu molekul tertentu atau satu grup molekul, sehingga sangat selektif. Antibodi adalah satu contoh protein yang hanya dapat mengikat satu tipe molekul saja. Salah satu jenis protein yang paling penting adalah enzim. Molekul enzim hanya dapat mengenali satu jenis molekul reaktan saja, reaktan ini disebut sebagai substrat. Enzim akan mengkatalis reaksi, sehingga energi aktivasi akan menurun, dan kecepatan reaksi dapat berlangsung lebih cepat sampai 1011 kalinya. Sebuah reaksi mungkin akan memakan waktu 3.000 tahun untuk betul-betul selesai, tetapi dengan enzim mungkin menjadi kurang dari satu detik. Enzim sendiri tidak digunakan dalam proses reaksinya, sehingga akan langsung mengkatalis substrat lainnya.
Pada dasarnya, protein terdiri dari rantai asam amino. Sebuah asam amino terdiri dari satu atom karbon yang berikatan dengan empat gugus. Gugus pertama dalah gugus amino, —NH2, gugus kedua adalah asam karboksilat, —COOH (meskipun berada sebagai —NH3+ dan —COO− dalam kondisi fisiologis). Gugus yang ketiga adalah atom hidrogen. Gugus yang keempat biasanya disingkat sebagai "—R", dan gugus inilah yang membedakan antar asam amino. Ada 20 macam asam amino standar. Beberapa dari mereka mempunyai fungsi sendiri-sendiri, misalnya, fungsi glutamat adalah sebagai neurotransmiter.
Asam amino dapat bergabung melalui ikatan peptida. Dalam sintesis dehidrasi ini, sebuah molekul air akan dilepaskan dan ikatan peptida akan menghubungkan atom nitrogen dari asam amino yang satu dengan atom karbon dari gugus asam karboksil lain. Maka, hasilnya adalah dipeptida. Rangkaian beberapa asam amino (biasanya lebih kecil dari 30) disebut polipeptida. Untuk rangkaian yang lebih panjang, biasanya disebut sebagai protein. Sebagai contoh, protein albumin pada plasma darah terdiri dari 585 residu asam amino.
Struktur dari protein bisa dijelaskan melalui empat tingkatan. Struktur primer dari protein terdiri dari rangkaian linear asam amino, misalnya, "alanin-glisin-triptofan-serin-glutamat-asparagin-glisin-lisin-…". Struktur sekunder lebih kepada morfologi lokal. Beberapa kombinasi dari asam amino akan cenderung membentuk gulungan yang disebut dengan α-helix atau menjadi lembaran yang disebut dengan β-sheet. Struktur tersier adalah bentuk 3 dimensi protein tersebut secara keseluruha. Bentuk ini akan ditentukan oleh urutan asam amino. Jika ada satu perubahan saja maka akan mengubah keseluruhan struktur. Rantai alfa hemoglobin terdiri dari 146 residu asam amino, jika residu glutamat di posisi ke-6 digantikan dengan valin, maka akan mengubah sifat hemoglobin tersebut, dan mengakibatkan penyakit anemia sel sabit. Struktur kuartener lebih memfokuskan pada struktur dari protein dengan beberapa subunit peptida. Contohnya, hemoglobin dengan keempat subunitnya. Tidak semua protein memiliki lebih dari satu subunit.
Protein yang masuk ke dalam tubuh akan dipecah menjadi asam amino atau dipeptida di dalam usus halus, baru kemudian bisa diserap oleh tubuh. Nantinya, asam amino ini dapat bergabung kembali untuk membentuk protein yang baru. Produk antara dari glikolisis, siklus asam sitrat, dan jalur fosfat pentosa dapat digunakan untuk membentuk kedua puluh macam asam amino. Manusia dan mamalia lainnya hanya dapat mensintesa separuh dari ke-20 macam amino tersebut. Tubuh manusia tidak dapat mensintesa isoleusin, leusin, lisin, metionin, fenilalanin, treonin, triptofan, dan valin. Asam amino ini merupakan asam amino esensial, karena penting bagi tubuh. Mamalia dapat mensintesa asam amino non esensial, yaitu alanin, asparagin, aspartat, sistein, glutamat, glutamin, glisin, prolin, serin, dan tirosin. Arginin dan histidin juga dapat disintesa mamalia, tetapi hanya dapat diproduksi dalam jumlah terbatas, sehingga terkadang juga disebut sebagai asam amino esensial.
Jika gugus amino dilepaskan dari sebuah asam amino, maka akan menyisakan asam keto-α. Enzim transaminase akan mudah memindahkan gugus amino yang lepas ini ke asam keto-α lainnya. Hal ini penting di dalam biosintesis dari asam amino, seperti dalam banyak jalur, zat antara dari jalur biokimia lainnya akan diubah menjadi asam keto-α, lalu sebuah gugus amino ditambahkan lewat transaminasi. Maka, asam amino dapat digabung-gabungkan untuk membentuk protein.
Proses yang mirip digunakan untuk memecah protein. Pertama-tama, protein akan terhidrolisa menjadi komponen-komponennya, yaitu asam amino. Amonia bebas (NH3), berada dalam bentuk ion amonium (NH4+) di dalam darah, akan berbahaya bagi tubuh, maka harus dikeluarkan. Organisme uniseluler hanya tinggal melepaskan saja amonia ini keluar tubuh. Di dalam tubuh mamalia, amonia akan diubah menjadi urea, lewat siklus urea.
Lipid
Kata lipid merujuk kepada suatu kelompok molekul yang beragam, termasuk juga kelompok molekul yang sulit larut dalam air (contohnya malam, asam lemak, dan turunan asam lemak seperti fosfolipid, sfingolipid, glikolipid, dan terpenoid. Beberapa lipid merupakan molekul alifatik linear, tetapi ada juga yang mempunyai struktur cincin. Beberapa juga molekul aromatik, dan beberapa juga lunak.
Beberapa lipid mempunyaii sifat polar meskipun kebanyakan dari mereka merupakan nonpolar/hidrofobik ("takut air"). Tapi ada beberapa bagian dari strukturnya bersifat hidrofilik ("suka-air"), sehingga membuat molekul ini menjadi amfifilik (mempunyai sifat hidrofobik dan hidrofilik). Dalam kasus kolesterol, gugus polarnya hanya -OH (hidroksil atau alkohol). Dalam kasus fosfolipid, gugus polarnya lebih besar sehingga dianggap polar.
Lipid merupakan salah satu unsur penting dalm tubuh. Kebanyakan produk minyak dan produk susu yang kita gunakan untuk masak dan makan seperti mentega, keju, dan minyak samin terdiri dari lemak. Makanan yang mengandung lemak, jika dicerna dalam tubuh maka akan dipecah menjadi asam lemak dan gliserol.
Asam nukleat
Asam nukleat merupakan makromolekul biokimia yang kompleks, terdiri dari rantai-rantai nukleotida yang menyimpan informasi genetik. Jenis asam nukleat yang paling umum adalah asam deoksiribonukleat (DNA) dan asam ribonukleat (RNA). Asam nukleat ditemukan di segala jenis sel makhluk hidup dan virus.Asam Nukleat umumnya terdapat pada bagian inti sel, misalnya pada mitokondria & kloroplas Disamping sebagai penyimpan informasi genetik, asam nukleat juga berperan dalam penyampai pesan kedua, serta pembentuk molekul dasar untuk adenosin trifosfat.
Monomer dari asam nukleat disebut nukleotida, dan tiap nukleotida terdiri dari 3 komponen: basa nitrogen (purin dan pirimidin), gula pentosa/senyawa gula karbon-5, dan gugus fosfat. Perbedaan tipe asam nukleat dapat ditemukan di jenis gula pada rantainya (contohnya, DNA terdiri dari 2 deoksiribosa). Juga, jenis basa nitrogen yang mungkin ada di asam nukleat juga bisa berbeda: adenin, sitosin, dan guanin bisa ada di RNA dan DNA, timin hanya pada DNA, dan urasil hanya pada RNA.
Lihat pula
- Daftar topik biokimia
- Biologi molekular
- Daftar biomolekul
- Ekologi kimia
- Biofisika
- Metabolom
- Metabolomika
- Obat-obatan molekular
- Biokimia tanaman
- Biologi struktural
- Stoikiometri
- Molekul kecil
- Kedokteran hewan
Pranala keluar
- The Virtual Library of Biochemistry and Cell Biology
- Biochemistry, 5th ed. Full text of Berg, Tymoczko, and Stryer, courtesy of NCBI.
- Biochemistry, 2nd ed. Full text of Garrett and Grisham.
- Biochemistry Animation (Narrated Flash animations.)
- SystemsX.ch - The Swiss Initiative in Systems Biology
- Biochemistry Online Resources – Lists of Biochemistry departments, websites, journals, books and reviews, employment opportunities and events.
- Perpustakaan Maya Biokimia dan Biologi Sel
Referensi
Catatan kaki
- ^ "Biological/Biochemistry". acs.org.
- ^ Voet (2005), p. 3.
- ^ Karp (2009), p. 2.
- ^ Miller (2012). p. 62.
- ^ Astbury (1961), p. 1124.
- ^ Eldra (2007), p. 45.
- ^ Marks (2012), Chapter 14.
- ^ Finkel (2009), pp. 1–4.
- ^ UNICEF (2010), pp. 61, 75.
- ^ a b Helvoort (2000), p. 81.
- ^ Hunter (2000), p. 75.
- ^ Hamblin (2005), p. 26.
- ^ Hunter (2000), pp. 96–98.
- ^ Berg (1980), pp. 1–2.
- ^ Holmes (1987), p. xv.
- ^ Feldman (2001), p. 206.
- ^ Rayner-Canham (2005), p. 136.
- ^ Ziesak (1999), p. 169.
- ^ Kleinkauf (1988), p. 116.
- ^ Ben-Menahem (2009), p. 2982.
- ^ Amsler (1986), p. 55.
- ^ Horton (2013), p. 36.
- ^ Kleinkauf (1988), p. 43.
- ^ Edwards (1992), pp. 1161–1173.
- ^ Fiske (1890), pp. 419–20.
- ^ Kauffman (2001), pp. 121–133.
- ^ Tropp (2012), pp. 19–20.
- ^ Krebs (2012), p. 32.
- ^ Butler (2009), p. 5.
- ^ Chandan (2007), pp. 193–194.
- ^ Whiting, G.C (1970). "Sugars". Dalam A.C. Hulme. The Biochemistry of Fruits and their Products. Volume 1. London & New York: Academic Press. hlm. 1=31.
Daftar pustaka
- Amsler, Mark (1986). The Languages of Creativity: Models, Problem-solving, Discourse. University of Delaware Press. ISBN 978-0-87413-280-9.
- Astbury, W.T. (1961). "Molecular Biology or Ultrastructural Biology ?". Nature. 190 (4781): 1124. Bibcode:1961Natur.190.1124A. doi:10.1038/1901124a0. PMID 13684868.
- Ben-Menahem, Ari (2009). Historical Encyclopedia of Natural and Mathematical Sciences. Historical Encyclopedia of Natural and Mathematical Sciences by Ari Ben-Menahem. Berlin: Springer. Springer. hlm. 2982. Bibcode:2009henm.book.....B. ISBN 978-3-540-68831-0.
- Burton, Feldman (2001). The Nobel Prize: A History of Genius, Controversy, and Prestige. Arcade Publishing. ISBN 978-1-55970-592-9.
- Butler, John M. (2009). Fundamentals of Forensic DNA Typing. Academic Press. ISBN 978-0-08-096176-7.
- Sen, Chandan K.; Roy, Sashwati (2007). "MiRNA: Licensed to Kill the Messenger". DNA and Cell Biology. 26 (4): 193–194. doi:10.1089/dna.2006.0567. PMID 17465885.
- Clarence, Peter Berg (1980). The University of Iowa and Biochemistry from Their Beginnings. ISBN 978-0-87414-014-9.
- Edwards, Karen J.; Brown, David G.; Spink, Neil; Skelly, Jane V.; Neidle, Stephen (1992). "Molecular structure of the B-DNA dodecamer d(CGCAAATTTGCG)2 an examination of propeller twist and minor-groove water structure at 2·2Åresolution". Journal of Molecular Biology. 226 (4): 1161–1173. doi:10.1016/0022-2836(92)91059-x. PMID 1518049.
- Eldra P. Solomon; Linda R. Berg; Diana W. Martin (2007). Biology, 8th Edition, International Student Edition. Thomson Brooks/Cole. ISBN 978-0-495-31714-2. Diarsipkan dari versi asli tanggal 2016-03-04.
- Fariselli, P.; Rossi, I.; Capriotti, E.; Casadio, R. (2006). "The WWWH of remote homolog detection: The state of the art". Briefings in Bioinformatics. 8 (2): 78–87. doi:10.1093/bib/bbl032 . PMID 17003074.
- Fiske, John (1890). Outlines of Cosmic Philosophy Based on the Doctrines of Evolution, with Criticisms on the Positive Philosophy, Volume 1. Boston and New York: Houghton, Mifflin. Diakses tanggal 16 February 2015.
- Finkel, Richard; Cubeddu, Luigi; Clark, Michelle (2009). Lippincott's Illustrated Reviews: Pharmacology (edisi ke-4th). Lippincott Williams & Wilkins. ISBN 978-0-7817-7155-9.
- Krebs, Jocelyn E.; Goldstein, Elliott S.; Lewin, Benjamin; Kilpatrick, Stephen T. (2012). Essential Genes. Jones & Bartlett Publishers. ISBN 978-1-4496-1265-8.
- Fromm, Herbert J.; Hargrove, Mark (2012). Essentials of Biochemistry. Springer. ISBN 978-3-642-19623-2.
- Hamblin, Jacob Darwin (2005). Science in the Early Twentieth Century: An Encyclopedia. ABC-CLIO. ISBN 978-1-85109-665-7.
- Helvoort, Ton van (2000). Arne Hessenbruch, ed. Reader's Guide to the History of Science. Fitzroy Dearborn Publishing. ISBN 978-1-884964-29-9.
- Holmes, Frederic Lawrence (1987). Lavoisier and the Chemistry of Life: An Exploration of Scientific Creativity. University of Wisconsin Press. ISBN 978-0-299-09984-8.
- Horton, Derek, ed. (2013). Advances in Carbohydrate Chemistry and Biochemistry, Volume 70. Academic Press. ISBN 978-0-12-408112-3.
- Hunter, Graeme K. (2000). Vital Forces: The Discovery of the Molecular Basis of Life. Academic Press. ISBN 978-0-12-361811-5.
- Karp, Gerald (2009). Cell and Molecular Biology: Concepts and Experiments. John Wiley & Sons. ISBN 978-0-470-48337-4.
- Kauffman, George B.; Chooljian, Steven H. (2001). "Friedrich Wöhler (1800–1882), on the Bicentennial of His Birth". The Chemical Educator. 6 (2): 121–133. doi:10.1007/s00897010444a.
- Kleinkauf, Horst; Döhren, Hans von; Jaenicke Lothar (1988). The Roots of Modern Biochemistry: Fritz Lippmann's Squiggle and its Consequences. Walter de Gruyter & Co. hlm. 116. ISBN 978-3-11-085245-5.
- Knowles, J.R. (1980). "Enzyme-Catalyzed Phosphoryl Transfer Reactions". Annual Review of Biochemistry. 49: 877–919. doi:10.1146/annurev.bi.49.070180.004305. PMID 6250450.
- Metzler, David Everett; Metzler, Carol M. (2001). Biochemistry: The Chemical Reactions of Living Cells. 1. Academic Press. ISBN 978-0-12-492540-3.
- Miller G; Spoolman Scott (2012). Environmental Science – Biodiversity Is a Crucial Part of the Earth's Natural Capital. Cengage Learning. ISBN 978-1-133-70787-5. Diakses tanggal 2016-01-04.
- Nielsen, Forrest H. (1999). Maurice E. Shils; et al., ed. Ultratrace minerals; Modern nutrition in health and disease. Baltimore: Williams & Wilkins. hlm. 283–303. hdl:10113/46493.
- Peet, Alisa (2012). Marks, Allan; Lieberman Michael A., ed. Marks' Basic Medical Biochemistry (Lieberman, Marks's Basic Medical Biochemistry) (edisi ke-4th). ISBN 978-1-60831-572-7.
- Rayner-Canham, Marelene F.; Rayner-Canham, Marelene; Rayner-Canham, Geoffrey (2005). Women in Chemistry: Their Changing Roles from Alchemical Times to the Mid-Twentieth Century. Chemical Heritage Foundation. ISBN 978-0-941901-27-7.
- Rojas-Ruiz, Fernando A.; Vargas-Méndez, Leonor Y.; Kouznetsov, Vladimir V. (2011). "Challenges and Perspectives of Chemical Biology, a Successful Multidisciplinary Field of Natural Sciences". Molecules. 16 (3): 2672–2687. doi:10.3390/molecules16032672. PMC 6259834 . PMID 21441869.
- Saenger, Wolfram (1984). Principles of Nucleic Acid Structure. New York: Springer-Verlag. ISBN 978-0-387-90762-8.
- Slabaugh, Michael R.; Seager, Spencer L. (2013). Organic and Biochemistry for Today (edisi ke-6th). Pacific Grove: Brooks Cole. ISBN 978-1-133-60514-0.
- Sherwood, Lauralee; Klandorf, Hillar; Yancey, Paul H. (2012). Animal Physiology: From Genes to Organisms. Cengage Learning. ISBN 978-0-8400-6865-1.
- Stryer L, Berg JM, Tymoczko JL (2007). Biochemistry (edisi ke-6th). San Francisco: W.H. Freeman. ISBN 978-0-7167-8724-2.
- Tropp, Burton E. (2012). Molecular Biology (edisi ke-4th). Jones & Bartlett Learning. ISBN 978-1-4496-0091-4.
- UNICEF (2010). Facts for life (PDF) (edisi ke-4th). New York: United Nations Children's Fund. ISBN 978-92-806-4466-1.
- Ulveling, Damien; Francastel, Claire; Hubé, Florent (2011). "When one is better than two: RNA with dual functions" (PDF). Biochimie. 93 (4): 633–644. doi:10.1016/j.biochi.2010.11.004. PMID 21111023.
- Varki A, Cummings R, Esko J, Jessica F, Hart G, Marth J (1999). Essentials of glycobiology. Cold Spring Harbor Laboratory Press. ISBN 978-0-87969-560-6.
- Voet, D; Voet, JG (2005). Biochemistry (edisi ke-3rd). Hoboken, NJ: John Wiley & Sons Inc. ISBN 978-0-471-19350-0. Diarsipkan dari versi asli tanggal September 11, 2007.
- Whiting, G.C (1970). "Sugars". Dalam A.C. Hulme. The Biochemistry of Fruits and their Products. Volume 1. London & New York: Academic Press. ISBN 978-0-12-361201-4.
- Ziesak, Anne-Katrin; Cram Hans-Robert (1999). Walter de Gruyter Publishers, 1749–1999. Walter de Gruyter & Co. ISBN 978-3-11-016741-2.
- Ashcroft, Steve. "Professor Sir Philip Randle; Researcher into metabolism: [1st Edition]". Independent. ProQuest 311080685.